Физиология органа равновесия (вестибулярного анализатора)

Обновлено: 09.09.2024

Причиной головокружения в большинстве случаев служит нарушение согласованной деятельности различных сенсорных систем – вестибулярной, зрительной, проприоцептивной (информация о положении тела в пространстве, получаемая от рецепторов, расположенных главным образом в мышцах и сухожилиях). Кроме того, важной, а иногда и доминирующей причиной возникновения головокружения является дисфункция центральных структур, участвующих в поддержании равновесия тела, главным образом, ядер мозжечка.

Вестибулярная система

Вестибулярная система состоит из:

  • лабиринта,
  • вестибулярной части преддверно-улиткового нерва,
  • вестибулярных ядер в стволе головного мозга, а также их связей с другими отделами ЦНС (центральной нервной системы).

Правильная работа вестибулярной системы позволяет человеку четко ориентироваться в трехмерном пространстве, а именно:

  • воспринимать положение тела относительно вектора силы тяжести (статический компонент);
  • ощущать направление и скорость движения тела при его угловых и линейных перемещениях (динамический компонент).

Лабиринт располагается в каменистой части височной кости и включает:

  • отолитовый аппарат, который представлен двумя сообщающимися камерами (саккулус и утрикулус);
  • системой трех полукружных каналов, располагающихся во взаимоперпендикулярных плоскостях.

Строение лабиринта

Строение лабиринта

В каждой камере отолитового аппарата и в каждом полукружном канале имеется скопление рецепторных клеток – макула, которая покрыта желатинообразной массой – купулой. В отолитовом аппарате купула покрывает волосковые клетки наподобие подушки и содержит отложения кристаллов кальцита (отолиты), которые придают купуле дополнительный вес.

Отолитовый аппарат

Отолитовый аппарат

В полукружных каналах желатинообразная масса не содержит отолитов и полностью перекрывает просвет канала.

Рецепторы вестибулярной системы представлены волосковыми клетками, которые несут на апикальной поверхности от 60 до 80 тонких выростов цитоплазмы (стереоцилий) и одну ресничку (киноцилию).

Восприятие положения тела относительно силы гравитации

При вертикальном положении головы макула утрикулуса располагается горизонтально. Когда голова наклоняется в сторону, утяжеленная отолитами желатинообразная мембрана под действием силы тяжести соскальзывает в сторону наклона. Это скольжение приводит к изгибанию стереоцилей волосковых клеток. Наклон стереоцилей сопровождается (в зависимости от направления) повышением или снижением частоты нервных импульсов в чувствительных нейронах вестибулярного ганглия. Макула саккулуса располагается вертикально и действует таким же образом.

Восприятие положения тела относительно силы гравитации

Восприятие положения тела относительно силы гравитации

Восприятие линейных ускорений

При резком линейном ускорении тела купула саккулуса или утрикулуса за счет сил инерции смещается в направлении, противоположном направлению движения, что также приводит к изменению электрической активности рецепторов.

Восприятие углового ускорения

Три полукружных канала расположены в трех разных плоскостях. Каждый из трех каналов действует как замкнутая трубка, заполненная лимфой. В расширенной части канала его внутренняя стенка выстлана волосковыми клетками, а расположенная над ними купула полностью перекрывает просвет канала. При повороте головы полукружные каналы поворачиваются вместе с ней, а эндолимфа в силу своей инерции в первый момент остается на месте. В результате этого возникает разность давлений по обе сторону купулы, и она прогибается в направлении, противоположном движению. Это вызывает деформацию стереоцилий и последующее изменение активности нейронов.

Восприятие углового ускорения

Восприятие углового ускорения

При вращении головы только в горизонтальной, сагитальной или фронтальной плоскости активируются рецепторы одного из соответствующих каналов. При сложном вращении головы активируются рецепторы всех трех каналов. Информация от них поступает в головной мозг и на основе ее конвергенции и анализа модулируется истинная картина перемещения головы.

Центральный отдел вестибулярной системы

Аксоны чувствительных нейронов, тела которых располагаются в вестибулярном ганглии, следуют в продолговатый мозг и оканчиваются в четырех парных вестибулярных ядрах. Приходящие в эти ядра импульсы от рецепторов дают точную информацию о положении в пространстве исключительно головы (но не всего тела!), поскольку она может быть наклонена или повернута относительно туловища. Для восприятия положения тела в пространстве необходим также учет угла наклона и поворота головы относительно туловища, поэтому вестибулярные ядра получают дополнительные стимулы от проприорецепторов мышц шеи.

Ядра вестибулярного нерва и их связи

Ядра вестибулярного нерва и их связи

Далее от вестибулярных ядер афферентная импульсация направляется к нейронам специфических ядер таламуса, а отростки последних достигают постцентральной извилины коры больших полушарий головного мозга

Проприоцептивная система

Благодаря проприоцепции, мы ощущаем положение конечностей, движение и степень мышечного напряжения в них. Это дает человеку чувство “опоры”, т.е. осознание, что стопы опираются на какую-либо поверхность, удерживая вес тела. Рецепторный аппарат проприоцептивной чувствительности, расположен в мышцах, сухожилиях, фасциях, капсулах суставов, а также в коже.

Необходимо отметить, что важную роль в поддержании равновесия тела играют рецепторы глубокой чувствительности, расположенные не только в конечностях, но и в структурах шеи, главным образом, в глубоких мышцах. Информация, получаемая головным мозгом от этих рецепторов, необходима для пространственной ориентации человека, поддержании его позы, а также координинации движения головы и туловища.

Зрительная система

Эффективное поддержание равновесия требует четкого контроля со стороны зрительной системы (в соответствие с принципом обратной связи). При этом контроль над движениями мышц глазного яблока является чрезвычайно сложным процессом. Существует 3 основных системы контроля взора:

  1. Система саккадических движений глазных яблок;
  2. Система плавных (следящих) движений глазных яблок;
  3. Вестибуло-окулярная система.

В пределах головного мозга эти системы контролируются определенными анатомическими зонами, которые являются в значительной степени изолированными, и обеспечивают две главные функции:

  1. зафиксировать предмет рассматривания в периферии визуальной области, поворачивая к нему глаза;
  2. удержать изображение предмета рассматривания устойчивым на ямке сетчатки.
Система саккадических движений глазных яблок

Когда объект интереса появляется в периферии визуальной области, происходит быстрый поворот глазных яблок в его сторону, так, что изображение объекта проецируется на сетчатку в области желтого пятна. Тот же самый двигательный ответ глазных яблок может быть вызван внезапным звуком или болезненным стимулом. Такое быстрое движение глаз называется саккадическим, от французского слова, означающего резкое движение парусника при ветре или дергание головы лошади от потягивания узды. В целом, система саккадических движений глазных яблок обеспечивает обнаружение зрительной цели и выведение ее на наиболее чувствительную часть сетчатой оболочки. Саккады возникают, например, в процессе чтения, при этом глаза человека обычно совершают несколько саккадических движений на каждой строке. Кроме того, они появляются, когда человек рассматривает какой-либо объект (картину, скульптуру и пр.), но в этом случае саккады совершаются в разных направлениях (вверх, вниз, в стороны и под углом) последовательно от одной точки объекта к другой.

Классическое изображение, описывающее саккадические движение глазных яблок при рассматривании объекта

Классическое изображение, описывающее саккадические движение глазных яблок
при рассматривании объекта

Система плавных (следящих) движений глазных яблок

Когда объект рассматривания перемещается, саккадическая система может первоначально зафиксировать его, но скоро теряет, поскольку изображение ускользает из области желтого пятна (сетчатое скольжение). Плавные (следящие) движения глаз необходимы для длительной фиксации движущегося объекта и слежения за ним. После того как визуальная цель выбрана, система работает вне волевого контроля.

Схематическое изображение функционирования системы плавных (следящих) движений глаз.

Схематическое изображение функционирования системы
плавных (следящих) движений глаз

Вестибуло-окулярная система

В то время как система следящих движений глазных яблок фиксирует изображение перемещающегося объекта рассматривания на желтом пятне, существует другая система, которая позволяет стабилизировать изображение неподвижного объекта рассматривания на сетчатке во время движения головы. Это основная функция вестибуло-окулярной системы. Благодаря ее наличию у человека во время движения на транспорте по неровной дороге или ходьбе не возникает проблем с четким рассматриванием отдаленного объекта. В том случае, когда по какой-либо причине вестибуло-окулярная система не работает возникает феномен, называющийся “осциллопсия” – “дергание” визуальной картинки при движении.

Мозжечок

Основная функция мозжечка заключается в получении информации о положении тела в пространстве от всех органов чувств и регуляции на ее основе мышечного тонуса и движений для поддержания равновесия и выполнения точных действий.

Для больных с повреждением мозжечка характерна астазия-абазия – нарушение способности к сохранению равновесия тела при стоянии и ходьбе. Больные ходят, широко расставив ноги – так называемая туловищная атаксия (“пьяная походка”).

Ходьба на пятках и носках невозможна. Атаксия в данном случае развивается вследствие неспособности головного мозга координировать деятельность мышц в процессе преодоления силы тяжести. Также выявляются глазодвигательные расстройства. Они проявляются нарушением фиксации взора на неподвижных или двигающихся объектах, в результате чего возникают рывковые движения глаз при слежении. Также характерен вертикальный нистагм, бьющий вверх или вниз.

Вестибулярный анализатор

Вестибулярный анализатор имеет важное значение в регуляции положения тела в пространстве и его движений. Периферический отдел вестибулярного анализатора является частью внутреннего уха и состоит из полукружных каналов, размещенных в трех взаимно перпендикулярных плоскостях, и из статоцистных органов – двух мешочков – овального (маточки) и круглого, который расположен ближе к улитке (рис. 12.9).


Рис. 12.9. Строение вестибулярного аппарата

Оба мешочка располагаются в общей полости лабиринта, которая называется преддверием, а полукружные каналы – позади преддверия. Один конец каждого полукружного канала расширяется, образуя ампулу. В ампулах полукружных каналов находится по костному гребешку серповидной формы. К нему непосредственно прилегает перепончатый лабиринт и скопление двух рядов клеток: поддерживающих, или опорных, и чувствительных, волосковых, имеющих на верхнем конце 10-15 длинных волосков, склеенных желатинообразным веществом в кисточку, или заслонку. Полукружные каналы заполнены эндолимфой.

Овальный и круглый статоцистные мешочки преддверия выстланы изнутри плоским эпителием, за исключением некоторых участков, называемых пятнышками. Пятнышки состоят из цилиндрического эпителия, где располагаются опорные и чувствительные волосковые клетки. Опорные клетки образуют большое количество волокон, напоминающих войлок и склеенных желатинообразной массой, в которую включены известковые камешки – статолиты, или отолиты, прилегающие к волосковым клеткам. Как и полукружные каналы, мешочки заполнены эндолимфой. Волосковые клетки гребешков полукружных каналов и пятнышек статоцистных мешочков связаны с волокнами биполярных нейронов, находящихся в вестибулярном узле Скарпа, расположенном в глубине внутреннего слухового прохода (рис. 12.10).

Микроструктура периферического отдела вестибулярного анализатора

Рис. 12.10. Микроструктура периферического отдела вестибулярного анализатора:

А – структура и расположение волосковых клеток: 1 – волосковые клетки; 2 – опорная клетка; 3 – нервные окончания; 4 – нервное волокно; Б – схема строения отолитового аппарата: 1 – отолиты; 2 – отолитовая мембрана; 3 – волоски; 4 – опорные клетки; 5 – волосковые клетки; 6 – нервные волокна

Аксоны биполярных нейронов вестибулярного узла образуют вестибулярный нерв, который, сливаясь с улитковым нервом, образует слуховой нерв. После выхода из внутреннего слухового прохода слуховой нерв направляется к продолговатому мозгу, где снова делится на ветви – улитковый и вестибулярный нервы. После вступления в продолговатый мозг в мостомозжечковом углу вестибулярный нерв распадается на восходящую и нисходящую ветви, заканчивающиеся в вестибулярных ядрах продолговатого мозга. Вестибулярные ядра связаны волокнами с мозжечком, с центрами вегетативной нервной системы в продолговатом и промежуточном мозге, с ядрами глазодвигательных нервов III и IV в среднем мозге, со спинным мозгом и височными долями больших полушарий. Эти волокна входят в состав вестибуло-спинального, вестибуло-мозжечкового, рубро-спинального, вестибуло-ретикуляриого, всстибуло-кортикального путей и заднего продольного пучка, связывающегося с ядрами двигательных нервов глазных мышц.

При движениях головы происходит перемещение эндолимфы и отолитов, раздражающее волосковые клетки полукружных каналов и статоцистных мешочков, что вызывает возникновение центростремительных импульсов, которые по вестибулярному нерву передаются в продолговатый мозг, а затем в мозжечок, средний мозг, промежуточный мозг и височные доли больших полушарий. Полукружные каналы раздражаются в начале и в конце равномерного вращательного движения и угловых ускоренных или замедленных вращательных движений головы в одной плоскости. Следовательно, они регулируют главным образом координацию движений.

Статоцистные мешочки воспринимают начало и конец равномерного прямолинейного движения, прямолинейное ускорение и замедление, изменение силы тяжести и центробежной силы, тряску, качку – они в основном регулируют позу. Порог различения ускорения при прямолинейном движении составляет от 2 до 20 см/с, наклоны головы и тела вперед и назад при закрытых глазах – около 1,5–2°, в стороны – около 1°; порог повышается при вибрациях. Эти перемещения головы и тела изменяют относительно постоянное давление эндолимфы и отолитов на чувствительные клетки пятнышек. Изменения давления воспринимаются волосками чувствительных клеток и вызывают центростремительные импульсы в вестибулярных нервах.

При надавливании отолитов овального мешочка рефлекторно повышается тонус сгибателей шеи, рук, ног и туловища и понижается тонус разгибателей. При отставании отолитов, наоборот, понижается тонус сгибателей и повышается тонус разгибателей. Так регулируется движение туловища вперед и назад.

При высокой чувствительности вестибулярного аппарата в случае длительных вестибулярных воздействий отмечается укачивание, связанное с ухудшением самочувствия и вегетативными расстройствами, совокупность которых называют морской или воздушной болезнью.

Развитие вестибулярного аппарата у детей

У человека к 7 неделям внутриутробного развития оказываются сформированными полукружные каналы и начинается разделение клеток-гребешков и крист на чувствительные и поддерживающие волосковые клетки. На 8–10-й неделе происходит обособление мешочков преддверия. В итоге вестибулярный аппарат у детей созревает раньше других и у 6-месячного плода развит почти как у взрослого. Миелинизация волокон всего пути, по которому проходят импульсы от периферического отдела вестибулярного анализатора и до продолговатого мозга, происходит в период от 14 до 20 педель внутриутробного периода. На 21–22-й неделе внутриутробного развития начинают миелинизироваться волокна, соединяющие ядра преддверно-улиткового нерва, расположенные в продолговатом мозге, с мотонейронами спинного мозга. Несколько ранее (на 20-й неделе) устанавливается связь между ядрами преддверно-улиткового и глазодвигательного нервов.

Раннее морфологическое созревание вестибулярного анализатора обеспечивает появление уже на 4-м месяце внутриутробного развития различных рефлекторных реакций с вестибулярного аппарата. Они проявляются в изменении тонуса мышц конечностей, шеи, туловища, мышц глазных яблок.

Возбудимость вестибулярного аппарата проявляется с рождения, его функции тренируются при ритмической стимуляции (укачивании и ношении на руках). Вестибулярные механизмы тесно связаны с синхронизацией ритмов мозга, обеспечивающей процессы сна и активно формирующейся в первые месяцы постнатального онтогенеза; ритмическая стимуляция вестибулярного аппарата способствует их формированию.

Физиология органа равновесия (вестибулярного анализатора)

Физиология органа равновесия (вестибулярного анализатора)

Равновесие поддерживается благодаря координации визуального кинестетического и вестибулярного механизмов. Этот механизм обеспечивает пространственную ориентацию, вертикальное положение тела и ходьбу. Контроль за всеми группами мышц, обеспечивающими статику и движения тела, позволяет противодействовать влиянию веса тела и центробежных сил.

Ниже указаны основные функции вестибулярной системы:
• Передача в ЦНС информации о действии сил, вызывающих линейное и угловое ускорение.
• Координация движений в результате непрерывного контроля тонуса скелетных мышц. Информация от вестибулярных рецепторов координируется и интегрируется с информацией, поступающей в зрительную систему. Обеспечение пространственной ориентации также является функцией вестибулярной системы.

Различие между сенсорными клетками и внеклеточной жидкостью составляет физиологическую основу нормальной деятельности вестибулярного сенсорного органа. По волокнам преддверного нерва постоянно распространяются разряды потенциала действия, даже если рабочий орган находится в состоянии покоя (активность покоя).

Как и в улитке, каналы, участвующие в преобразовании механического сигнала в электрический, в волосковых клетках преддверия открываются в результате давления на верхушечные связующие микрофиламенты, вызывая входной ионный ток и изменение потенциала рецептора. В зависимости от направления, в котором отклоняются микроцилии волосковых клеток, активность покоя изменяется в результате увеличения частоты разрядов (деполяризаций) или ее уменьшения (гиперполяризация).

Таким образом, модуляция активности покоя позволяет человеку, используя один рецептор, воспринимать движения как в одном, так и в противоположном направлении.

а) Функция отолитового органа в обеспечении равновесия: восприятие линейного ускорения. Линейное ускорение является сенсорным стимулом для горизонтально ориентированного пятна маточки и вертикально ориентированного пятна сферического мешочка. Силы сдвига, возникающие при линейном ускорении, смещают отолиты и вызывают деформацию сдвига в волосковых клетках, которая является для этих клеток адекватным стимулом.

Возникающие в нейронах импульсы инициируют макулоокулярный рефлекс, вызывая компенсаторные движения глазных яблок, обеспечивающие оптимальное статическое положение глаз во время линейного движения. Инициируется также макулоспиналъный рефлекс, который влияет на мышцы туловища и конечностей через двигательные нейроны передних рогов спинного мозга, обеспечивая стабильное положение тела во время линейного движения.

У отолитового аппарата есть и другая функция: вследствие постоянного действия гравитационной силы отолиты оказывают постоянное давление на расположенные под ними сенсорные клетки даже в условиях покоя. Это давление влияет на активность механорецепторов в покое. Линейное ускорение, возникающее, например, при падении, быстром наклоне головы, авиаперелетах или быстром подъеме на лифте, изменяет активность покоя, обеспечивая тем самым непрерывный пространственный контроль во время движения по вертикали.

б) Функция полукружных каналов в обеспечении равновесия: восприятие углового ускорения. Положительное и отрицательное угловое ускорение приводит в движение эндолимфу в полукружных каналах, расположенных в плоскости действия центробежной силы. Стимул всегда действует на полукружные каналы с двух сторон; на одной стороне происходит смещение купола к маточке (ампулопетальная стимуляция), на другой - смещение в противоположном направлении (ампулофугальная стимуляция).

В результате в полукружном канале, в котором купол смещается в ампулопетальном направлении, активность покоя усиливается (деполяризующий эффект), в то время как в контралатеральном полукружном канале активность снижается (гиперполяризующий эффект). Этот принцип приложим только к горизонтальным полукружным каналам, так как ампулофугальное смещение вызывает деполяризацию в вертикальных полукружных каналах. Это является нейрофизиологической основой механизма стимуляции вестибулоокулярного рефлекса.

Вестибулоокулярный рефлекс также играет роль в пространственной ориентации. Кроме того, он участвует в стабилизации изображения окружающего мира на сетчатке и вызывает вестибулярный нистагм. Каждое движение головой вызывает медленное сопряженное движение глаз в противоположном направлении, с тем чтобы во время движения по возможности длительно стабилизировать поле зрения на сетчатке. Вестибулоокулярный рефлекс зависит от двух модифицируемых факторов: положения головы и положения глаз. Разница между этими положениями представляет собой угол зрения.

Вестибулярные сенсорные клетки

Биоэлектрическая активность вестибулярных сенсорных клеток в покое и при стимуляции.
Отклонение волосковых клеток в сторону от киноцилии (а) вызывает гиперполяризацию и угнетение активности покоя (б).
Отклонение волосковых клеток в противоположном направлении, т.е. в сторону киноцилии (в),
приводит к деполяризации и увеличению частоты разрядов потенциала действия.
1 - желатинозный слой; 2 - микроцилии; 3 - киноцилия;
4 - сенсорная клетка; 5 - синапс афферентного нервного волокна; 6 - волокно афферентного нерва.

P.S. Вестибулоокулярный рефлекс координирует скорость рефлекторного движения глаз (медленный компонент нистагма) со скоростью движения головы. Это обеспечивает четкий визуальный контроль за окружающей обстановкой во время движения. В результате этого рефлекса достигается быстрое обратное движение глаз, или быстрый компонент нистагма.

Сопряженное движение глаз в результате вестибулоокулярного рефлекса с характерным медленным и быстрым компонентами называется вестибулярным нистагмом.

Межпозвоночные суставы шейного отдела позвоночника и глубокие мышцы шеи содержат механорецепторы, которые связаны с ретикулярной формацией с помощью афферентных волокон, а ретикулярная формация, в свою очередь, связана с вестибулярным и глазодвигательным центрами. Функция этих рецепторов состоит в том, чтобы обеспечить непрерывную информацию о положении тела и движениях головы и сделать возможной координацию движений глаз посредством цервикоокулярных путей.

Центральная вестибулярная система включает в себя мозжечок и ретикулярную формацию ствола мозга, т.е. она интегрирована в центры анализа мультисенсорных данных. Это делает возможным мультисенсорный контроль и координацию положения тела, движений и глазодвигательной функции.

Анатомия уха

Анатомия уха в трех срезах.
Наружное ухо: 1 - ушная раковина; 2 - наружный слуховой проход; 3 - барабанная перепонка.
Среднее ухо: 4 - барабанная полость; 5 - слуховая труба.
Внутреннее ухо: 6 и 7 - лабиринт с внутренним слуховым проходом и преддверно-улитковым нервом; 8 - внутренняя сонная артерия;
9 - хрящ слуховой трубы; 10-мышца, поднимающая нёбную занавеску;
11 - мышца, напрягающая нёбную занавеску; 12 - мышца, напрягающая барабанную перепонку (мышца Тойнби).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Физиология вестибулярного анализатора.

Вестибулярная сенсорная система играет наряду со зрительным и кинестетическим анализаторами ведущую роль в пространственной ориентировке человека. Она передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярного анализатора не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.

Периферическим отделом вестибулярного анализатора является вестибулярный аппарат, находящийся в лабиринте пирамиды височной кости. Он состоит из преддверия и трех полукружных каналов. Кроме вестибулярного аппарата в лабиринт входит улитка, в которой располагаются слуховые рецепторы. Полукружные каналы располагаются в трех взаимно-перпендикулярных плоскостях: верхний – во фронтальной, задний – в сагиттальной и наружный – в горизонтальной. Один из концов каждого канала расширен (ампула). Вестибулярный аппарат включает в себя также два мешочка. Первый из них лежит ближе к улитке, а второй – к полукружным каналам. В мешочках преддверия находится отолитовый аппарат: скопление рецепторных клеток (вторичночувствующие механорецепторы) на возвышениях или пятнах. Выступающая в полость мешочка часть рецепторной клетки оканчивается одним более длинным подвижным волоском и 60-80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция – отолиты. Возбуждение волосковых клеток преддверия происходит вследствие скольжения отолитовой мембраны по волоскам, т.е. их сгибания.

В перепончатых полукружных каналах, повторяющих форму костных каналов, заполненных, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2-3 раза больше, чем у воды), рецепторные волосковые клетки сконцентрированы только в ампулах в виде крист. Они также снабжены волосками. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении – тормозятся. В волосковых клетках и преддверия, и ампулы при их сгибании генерируется рецепторный потенциал, который через синапсы (посредством выделения ацетилхолина) передает сигналы о раздражении волосковых клеток окончаниями волокон вестибулярного нерва.

Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают на нейроны бульбарного вестибулярного комплекса (ядра: преддверное верхнее Бехтерева, преддверное латеральное Дейтерса, Швальба и др.). Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и вегетативные ганглии.

Вестибулярный анализатор помогает организму ориентироваться в пространстве при активном движении животного и при пассивном переносе с места на место с завязанными глазами. При этом лабиринтный аппарат с помощью корковых отделов системы анализирует и запоминает направление движения, повороты и пройденной расстояние. Следует подчеркнуть, что в нормальных условиях пространственная ориентация обеспечивается совместной деятельностью зрительной и вестибулярной сенсорных систем.

Вестибулярный анализатор или орган равновесия

Вестибулярный анализатор или орган равновесия обеспечивает ощущение положения и перемещения человеческого тела или его частей в пространстве, а также обусловливает ориентацию и поддержание позы при всех возможных

Строение и расположение лабиринта и рецепторов отолитового аппарата

Рис. 17. Строение и расположение лабиринта и рецепторов отолитового аппарата:

1, 2, 3 - соответственно горизонтальный, фронтальный и сагиттальный полукругом каналы; 4,5 - отолитов аппарат: овальный (4) и круглый (5) мешочки; 6,7 - нервные ганглии; 8 - вестибуло-кохлеарный нерв (Ш пара черепно-мозговых нервов); 9 - отолиты; 10-желеобразная масса; 11 - волоски; 12 - рецепторные волосковые клетки; 13 - опорные клетки; 14 - нервные волокна

видах деятельности человека. Периферический (рецепторный) отдел вестибулярного анализатора расположен, как и внутреннее ухо, в лабиринтах пирамиды височной кости. Лежит он в так называемом вестибулярном аппарате (рис. 17) и состоит из преддверия (отолитового органа) и трех полукружных каналов, расположенных втроем взаимно перпендикулярных плоскостях: горизонтальной, фронтальной (слева направо), и сагиттальной (переднее-задний). Преддверие или переддверя состоит, как указывалось, из двух перепончатых мешочков: круглого, расположенного ближе к завитка внутреннего уха и овального (пестики), расположенного ближе к полукружных каналов. Перепончатые части полукружных каналов соединены пятью отверстиями с пестиком преддверия. Начальный конец каждого полукружного канала имеет расширение, называется ампулой. Все перепончатые части вестибулярного анализатора заполнены эндолимфой. Вокруг перепончатого лабиринта, (между ним и его костным футляром) находится перилимфой, которая переходит также в перилимфу внутреннего уха. На внутренней поверхности мешочков имеются небольшие возвышения (пятна) где именно и расположены рецепторы равновесия, или отолитовый аппарат, который размещен полувертикальном в овальном мешочке и горизонтально в круглом мешочке. В отолитового аппарата находятся рецепторные волосковые клетки (механорецепторы), имеющие на своей вершине волоски (реснички) двух типов; много тонких и коротких стереоцилиив и один более толстый и длинный волосок, произрастающего на периферии и называется киноцилий. Рецепторные волосковые клетки пятен на поверхности мешочков преддверия собраны в группы, называемые макулы. Киноцилии всех волосковых клеток погружены в студенистую массу расположенной над ними так называемой отолитовой мембраны, которая содержит многочисленные кристаллы фосфата и карбоната кальция, называемые Отолиты (в дословном переводе - ушные камни). Концы стереоцилиив волосковых клеток макулы свободно подпирают и удерживают на себе отолитового мембрану (рис. 18).

Рецепторы равновесия и их размещения в вестибулярном аппарате

Благодаря Отолиты (твердым включением), плотность отолитовой мембраны выше плотность среды, что его окружает. Под действием силы тяжести гравитации или ускорения, отолитового мембрана смещается относительно рецепторных клеток, волоски (киноцилии) этих клеток сгибаются и в них возникает возбуждение. Таким образом, отолитовый аппарат каждое мгновение контролирует расположение тела относительно силы тяжести; определяет, в каком положении в пространстве (в горизонтальном или в вертикальном) находится тело, а также реагирует на прямолинейные ускорения при вертикальных и горизонтальных движениях тела. Порог чувствительности отолитового аппарата к прямолинейных ускорений равна 2-20 см / сек., А порог распознавания наклона головы в сторону составляет 1 °; вперед и назад - около 2 °. При сопутствующих раздражениях (при действии вибрации, колебания, тряски) чувствительность вестибулярного анализатора снижается (например, вибрации транспорта могут повышать порог распознавания наклона головы вперед и назад до 5 °, а в сторону -до 10 °).

Второй частью вестибулярного аппарата есть три полукружных канала, каждый диаметром около 2 мм. На внутренней поверхности ампул полукружных каналов (рис. 18) расположены гребешки, на вершине которых волосковые клетки сгруппированы в кристы, над которыми расположена студенистая масса с Отолиты, что здесь называется листовидной мембраной или купул. Киноцилии волосковых клеток крист, так как это было описано и для отолитового аппарата мешочков преддверия, погруженные в купул и возбуждаются от движений эндолимфы, возникающие при перемещениях тела в пространстве. При этом наблюдается движение волосков - стереоцилиив в сторону киноцилиив. Возникает рецепторный потенциал действия волосковых клеток, выделяется медиатор ацетилхолин, который и стимулирует синаптические окончания вестибулярного нерва. Если смещение стереоцилиив направлено в противоположную от киноцилий сторону, то активность вестибулярного нерва наоборот снижается. Дня волосковых клеток полукружных каналов адекватным раздражителем является ускорение или замедление вращения в определенных плоскостях. Дело в том, что эндолимфа полукружных каналов имеет такую же плотность, как и купул ампул и поэтому прямолинейные ускорения не влияют на положение волосков волосковых клеток и купулы. При вращении головы или тела возникают угловые ускорения и тогда купул начинает двигаться, возбуждая рецепторные клетки. Порог распознавания вращения для рецепторов полукружных каналов составляет примерно 2-3 ° / сек.

К рецепторам вестибулярного аппарата подходят периферийные волокна биполярных нейронов вестибулярного ганглия, ию расположен во внутреннем ухе (первые нейроны). Аксоны этих нейронов сплетаются вместе с нервными волокнами от рецепторов внутреннего уха и образуют единый вестибуло-кохлеарний или преддверно-улитковый нерв (VIII пара черепно-мозговых нервов). Импульсы возбуждения о положении тела в пространстве этим нервом поступают в продолговатого мозга (второй нейрон), в частности в вестибулярный центр, куда также приходят нервные импульсы от рецепторов мышц и суставов. Третий нейрон расположен в ядрах зрительных бугорков среднего мозга, которые в свою очередь соединены нервными путями с мозжечком (отделом мозга, обеспечивающей координацию движений), а также с подкорковыми образованиями и корой головного мозга (центрами движения, письма, речи, глотания и так далее). Центральный отдел вестибулярного анализатора локализуется в височной доле головного мозга.

При возбуждении вестибулярного анализатора возникают соматические реакции (на основе вестибуло-спинальных нервных связей), способствующих перераспределению тонуса мышц и постоянной поддержке равновесия тела в пространстве. Рефлексы, обеспечивающие равновесие тела делятся на статические (вне стояния, сидения и др.) И статокинетические. Примером статокинетического рефлекса может быть вестибулярный нистагм глаз. Нистагм возникает в условиях быстрого перемещения тела или его вращения и состоит в том, что глаза сначала медленно движутся в сторону, противоположную направлению перемещения или вращения, а затем быстрым движением в обратном направлении перескакивают на новую точку фиксации зрения. Реакции такого типа обеспечивают возможность обозрения пространства в условиях движения тела.

Благодаря связям вестибулярных ядер с мозжечком обеспечиваются все подвижные реакции и реакции по координации движений, в том числе во время выполнения трудовых операций или спортивных упражнений. Поддержании равновесия также способствуют зрение и мышечно-суставная рецепция.

Связь вестибулярных ядер с вегетативной нервной системой обусловливает вестибуло-вегетативные реакции сердечно-сосудистой системы, желудочно-кишечного тракта и других органов. Такие реакции могут проявляться в изменениях сердечного ритма, тонуса сосудов, артериального давления, могут возникать тошнота и рвота (например, как это бывает при длительном и сильном воздействии специфических раздражителей движения транспорта на вестибулярный аппарат, приводит к укачивания).

Формирование вестибулярного аппарата у детей заканчивается раньше других анализаторов. У новорожденного ребенка этот орган функционирует почти так же, как и у взрослого человека. Тренировка двигательных качеств у детей с самого раннего детства способствует оптимизации развития вестибулярного анализатора и, как результат, разнообразит их двигательные возможности, до феноменальных (например, упражнения цирковых акробатов, гимнастов и др.).

Читайте также: