Мембранный потенциал и электрохимический градиент

Обновлено: 24.04.2024

Фотофосфорили́рование — процесс синтеза АТФ из АДФ за счёт энергии света. Как и в случае окислительного фосфорилирования, энергия света расходуется на создание протонного градиента на мембране тилакоидов или клеточной мембране бактерии, который затем используется АТФ-синтазой. Фотофосфорилирование — очень древняя форма фотосинтеза, которая есть у всех фототрофных эукариот, бактерий и архей. Различают два типа фосфорилирования — циклическое, сопряжённое с циклическим потоком электронов в электрон-транспортной.

Хемиосмос — биохимический механизм, с помощью которого осуществляется превращение энергии цепи переноса электронов в энергию АТФ. Включает изменение электрохимического потенциала клеточной мембраны.

Пластоцианин — медьсодержащий белок, вовлечённый в транспорт электронов от фотосистемы II к фотосистеме I. Этот мономерный белок, состоящий у большинства сосудистых растений из 99 аминокислот, имеет молекулярную массу около 10,5 кДа. Он является представителем пластоцианинового семейства медьсвязывающих белков.

Убихинол — восстановленная форма убихинона. Несёт два дополнительных электрона и два протона. Фактически убихинол можно рассматривать как убихинон, который присоединил к себе молекулу водорода.

Субстратное фосфорилирование — характерная для всех живых организмов реакция синтеза АТФ или ГТФ путём прямого переноса фосфата (PO3) на АДФ или ГДФ с высокоэнергетического промежуточного продукта. В ходе катаболического окисления органических соединений в живых клетках неорганический фосфат переносится на органическое вещество с образованием богатых энергией молекул, с которых он переносится на АДФ или ГДФ. При этом перенос может происходить только с молекул с достаточно высоким потенциалом переноса.

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный активный транспорт) или через слой клеток (трансцеллюлярный активный транспорт), протекающий из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии для осуществления активного транспорта служит энергия макроэргических связей АТФ.

Окисли́тельное фосфорили́рование — метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ. Хотя различные формы жизни на Земле используют разные питательные вещества, АТФ является универсальным соединением, в котором запасается энергия, необходимая для других метаболических процессов. Почти все аэробные организмы осуществляют окислительное фосфорилирование. Вероятно, широкому распространению этого метаболического пути.

Мембранный потенциал, также трансмембранный потенциал или напряжение мембраны, иногда потенциал Нернста — разница в электрическом потенциале (электрический градиент), возникающая между зарядами внутренней и внешней стороны полупроницаемой мембраны (в частном случае мембраны клетки). Что касается внешней поверхности клетки, то типичные значения мембранного потенциала для неё располагаются в диапазоне от -40 мВ до -80 мВ.

Дыхательная цепь переноса электронов, также электрон-транспортная цепь (сокр. ЭТЦ, англ. ETC, Electron transport chain) — система трансмембранных белков и переносчиков электронов, необходимых для поддержания энергетического баланса. ЭТЦ поддерживает баланс за счёт переноса электронов и протонов из НАД∙Н и ФАДН2 в акцептор электронов. В случае аэробного дыхания акцептором может быть молекулярный кислород (О2). В случае анаэробного дыхания акцептором могут быть NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид.

Пассивный транспорт — перенос веществ из области высокой концентрации в область низкой без затрат энергии (например, диффузия, осмос). Диффузия — пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос — пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Мембранный транспорт — транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов — простой диффузии, облегченной диффузии и активного транспорта.

Градиент концентрации или концентрационный градиент — это векторная физическая величина, характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией. Вектор диффузионного потока направлен против вектора градиента.

Окисли́тельное декарбоксили́рование пирува́та — биохимический процесс, заключающийся в отщеплении одной молекулы углекислого газа (СО2) от молекулы пирувата и присоединения к декарбоксилированному пирувату кофермента А (КоА) с образованием ацетил-КоА; является промежуточным этапом между гликолизом и циклом трикарбоновых кислот. Декарбоксилирование пирувата осуществляет сложный пируватдегидрогеназный комплекс (ПДК), включающий в себя 3 фермента и 2 вспомогательных белка, а для его функционирования.

Никотинамидадениндинуклеотидфосфа́т (НАДФ, NADP) — широко распространённый в природе кофермент некоторых дегидрогеназ — ферментов, катализирующих окислительно-восстановительные реакции в живых клетках. НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества. В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях. НАДФ, — кофермент, отличающийся от НАД.

Аденозинтрифосфа́т или Аденозинтрифосфорная кислота (сокр. АТФ, англ. АТР) — нуклеозидтрифосфат, имеющий большое значение в обмене энергии и веществ в организмах. АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в живых системах, в частности для образования ферментов. Открытие вещества произошло в 1929 году группой учёных Гарвардской медицинской школы — Карлом Ломаном, Сайрусом Фиске и Йеллапрагадой Суббарао, а в 1941 году Фриц Липман показал, что АТФ является основным.

ФАД — флавинадениндинуклеотид — кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах — окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Аденозиндифосфат (АДФ) — нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ образуется в результате переноса концевой фосфатной группы Аденозинтрифосфата (АТФ). АДФ участвует в энергетическом обмене во всех живых организмах, из него образуется АТФ путём фосфорилирования с затратами энергии (субстратное фосфорилирование, окислительное фосфорилирование, или фотофосфорилирование при фотосинтезе).

Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh или Eh) — мера способности химического вещества присоединять электроны (восстанавливаться). Окислительно-восстановительный потенциал выражают в милливольтах (мВ). Примером окислительно-восстановительного электрода являются: Pt/Fe3+,Fe2+

Активные формы кислорода (АФК, реактивные формы кислорода, РФК, англ. Reactive oxygen species, ROS) — включают ионы кислорода, свободные радикалы и перекиси как неорганического, так и органического происхождения. Это, как правило, небольшие молекулы с исключительной реактивностью благодаря наличию неспаренного электрона на внешнем электронном уровне.

Восстановительный пентозофосфатный цикл, или цикл Кальвина, — серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2. Цикл Кальвина назван в честь американского биохимика Мелвина Кальвина (1911—1997). Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии.

Субстра́т в биохимии — исходное вещество, преобразуемое ферментом в результате специфического фермент-субстратного взаимодействия в один или несколько конечных продуктов. После окончания катализа и высвобождения продукта реакции активный центр фермента снова становится вакантным и может связывать другие молекулы субстрата.

Железосерные кластеры (также Fe—S-кластеры) — элементоорганические соединения, группа белковых кофакторов, обладающих окислительно-восстановительным (Red/Ox) потенциалом в районе от −500 мВ до +300 мВ. Red/Ox-потенциал зависит от структуры и конформации белка, что делает эти кофакторы важнейшими участниками окислительно-восстановительных реакций в клетке. Железосерные кластеры способны принимать или отдавать электроны (см. рисунок). Белки, содержащие железосерные кластеры, являются эволюционно древними.

Фотодыхание (гликолатный путь, С2-фотосинтез) — стимулируемое светом выделение углекислого газа и поглощение кислорода у растений преимущественно с С3-типом фотосинтеза. Также под фотодыханием понимают биохимический путь, связанный с регенерацией одной молекулы 3-фосфоглицериновой кислоты (С3) из двух молекул гликолевой кислоты (С2) и лежащий в основе вышеописанного газообмена. Наличие биохимического механизма фотодыхания обусловлено значительной оксигеназной активностью РуБисКО, ключевого фермента.

Гликогеногене́з — метаболический путь синтеза гликогена из глюкозы, происходящий с расходованием энергии в виде ATP и UTP. Гликогеногенез происходит во всех тканях животных, однако в основном он имеет место в печени и мышцах. Синтез гликогена происходит в период пищеварения (в абсорбтивный период, т. е. 1—2 часа после приёма углеводной пищи.

Диме́р (от др.-греч. δι- «два» + μέρος «часть») — сложная молекула, составленная из двух более простых молекул, называемых мономерами данной молекулы.Димеры могут состоять как из одинаковых мономеров (гомодимеры), так и из разных мономеров (гетеродимеры). Мономеры могут быть как органическими, так и неорганическими.

Реакционный центр — комплекс белков, пигментов и других кофакторов, взаимодействие которых обеспечивает реакцию превращения энергии света в химическую при фотосинтезе. Реакционный центр получает энергию или через непосредственное возбуждение одной из своих молекул или через перенос энергии от светособирающих комплексов, что даёт начало цепочке химических реакций, происходящей на связанных белками кофакторах. Эти кофакторы — светопоглощающие молекулы (также именуемые хромофорами или пигментами) такие.

Пентозофосфа́тный путь (пентозный путь, гексозомонофосфатный шунт, путь Варбурга — Диккенса — Хорекера) — альтернативный путь окисления глюкозы (наряду с гликолизом и путём Энтнера — Дудорова), включает в себя окислительный и неокислительный этапы.

Макроэргические молекулы (макроэрги) — биологические молекулы, которые способны накапливать и передавать энергию в ходе реакции. При гидролизе одной из связей высвобождается более 20 кДж/моль. По химическому строению макроэрги — чаще всего ангидриды фосфорной и карбоновых кислот, а также слабых кислот, какими являются тиолы и енолы.

Оксидоредукта́зы (КФ1) — отдельный класс ферментов, катализирующих лежащие в основе биологического окисления реакции, сопровождающиеся переносом электронов с одной молекулы (восстановителя — акцептора протонов или донора электронов) на другую (окислитель — донор протонов или акцептор электронов).

Тра́нспортные белки́ — собирательное название большой группы белков, выполняющих функцию переноса различных лигандов как через клеточную мембрану или внутри клетки (у одноклеточных организмов), так и между различными клетками многоклеточного организма. Транспортные белки могут быть как интегрированными в мембрану, так и водорастворимыми белками, секретируемыми из клетки, находящимися в пери- или цитоплазматическом пространстве, в ядре или органеллах эукариот.

Коферменты, или коэнзимы — малые молекулы небелковой природы, специфически соединяющиеся с соответствующими белками, называемыми апоферментами, и играющие роль активного центра или простетической группы молекулы фермента.

Остаток в биохимии и молекулярной биологии — структурная единица биополимера, состоящего из аминокислот и сахаров; часть мономера, которая остаётся неизменной после включения его в биополимер. Например, остатками принято называть аминокислотные звенья, входящие в состав пептида. Остатки уже не являются аминокислотами, так как в результате реакции конденсации, они утратили по одному атому водорода из аминогруппы и гидроксил, входящий в состав карбоксильной группы. Кроме того, остатками также считаются.

Нитрогеназа (КФ 1.18.6.1) — комплекс ферментов (мультифермент), осуществляющий процесс фиксации атмосферного азота. Широко распространён у бактерий и архей, в то время как все эукариоты его лишены.

Активный центр — согласно ИЮПАК, это особая часть молекулы фермента, определяющая её специфичность и каталитическую активность.

Внутренняя мембрана митохондрий — митохондриальная мембрана, разделяющая митохондриальный матрикс и межмембранное пространство.

Конформа́ция молекулы (от лат. conformatio «форма, построение, расположение») — пространственное расположение атомов в молекуле определённой конфигурации, обусловленное поворотом вокруг одной или нескольких одинарных сигма-связей. В некоторых случаях в конформационные преобразования включают и пирамидальные инверсии и другие политопные перегруппировки неорганических и элементоорганических соединений.

Вторичные посредники, или «вторичные мессенджеры» — это внутриклеточные сигнальные молекулы, высвобождаемые в тех или иных внутриклеточных сигнальных каскадах в ответ на стимуляцию тех или иных рецепторов и вызванную ею активацию первичных эффекторных белков. Вторичные посредники, в свою очередь, приводят к активации вторичных эффекторных белков. Это, в свою очередь, запускает каскад тех или иных физиологических изменений, которые могут быть важны для обеспечения таких важных физиологических процессов.

Интегральный мембранный белок (ИМБ, IMP или просто интегральный белок) — один из типов мембранных белков, которые прочно связаны с цитоплазматической мембраной (интегрированы). Они составляют значительную часть белков, закодированных в геноме любого организма. Интегральные белки могут быть погружены в мембрану полностью, а иногда даже пронизывают её насквозь. В этом смысле, все трансмембранные белки являются интегральными белками, но не все интегральные — трансмембранными. Связь интегральных белков.

Оксалоацетат, щавелевоуксусная кислота (HO2C-C(O)-CH2-CO2H) — органическое соединение, четырёхуглеродная двухосновная кетокислота. Существует в виде таутомера HO2C-C(OH)=CH-CO2H.

Кооперативность — это явление в биохимии, характерное для ферментов или рецепторов, которые имеют множественные сайты связывания. Также явление кооперативности отмечено для больших молекул, имеющих многие идентичные субъединицы (ДНК, белки, фосфолипиды), в момент, когда происходят фазовые переходы — плавление, разворачивание, расплетание.

Аденозинмонофосфат (AМФ, adenosine monophosphate) 5'-аденилат, это эфир фосфорной кислоты и аденозинового нуклеозида. Молекула АМФ содержит фосфатную группу, сахар рибозу и азотистое основание аденин (A). АМФ играет важную роль во многих клеточных процессах обмена веществ. АМФ также компонент синтеза РНК.

Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Простетическая группа — небелковый (и не производный от аминокислот) компонент, ковалентно связанный с белком, который выполняет важную роль в биологической активности соответствующего белка. Простетические группы могут быть органическими (витамины, углеводы, липиды) или неорганическими (например, ионы металлов).

Донорно-акцепторное взаимодействие — перенос заряда между молекулами донора и акцептора без образования между ними химической связи (обменный механизм); или передача неподеленной электронной пары от донора к акцептору, приводящая к образованию связи (донорно-акцепторный механизм).

Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДH2 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ.

Амфифильность (иначе дифильность) — свойство молекул веществ (как правило, органических), обладающих одновременно лиофильными (в частности, гидрофильными) и лиофобными (гидрофобными) свойствами.

Потенциа́л поко́я — мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от −55 до −100 мВ. У нейронов и нервных волокон обычно составляет −70 мВ.

Связывание углерода — общее название совокупности процессов, при которых углекислый газ CO2 преобразуется в органические вещества. Такие процессы используют автотрофы, то есть организмы, которые сами вырабатывают необходимые для себя органические вещества. В частности, процесс связывания углерода является составной частью фотосинтеза.

Мембранный потенциал и электрохимический градиент

Сохранение энергии на мембранах

129

Наряду с макроэргическими соединениями другим местом накопления химической энергии являются биологические мембраны. В технике система, работающая за счет разделения электрических зарядов непроводящим слоем, называется конденсатором. По принципу конденсатора функционируют биомембраны, разделяющие подобно изолирующему слою заряженные атомы и молекулы ( ионы ).

А. Электрохимический градиент

В то время как искусственная липидная мембрана для ионов практически не проницаема, биологические мембраны содержат « ионные каналы », по которым отдельные ионы избирательно проникают через мембрану (см. с. 220). Проницаемость и полярность мембраны зависят от электрохимического градиента , т. е. от концентраций ионов по обе стороны мембраны ( концентрационного градиента ) и от разности электрических потенциалов между внутренней и внешней сторонами мембраны ( мембранного потенциала ).

В состоянии покоя клеток мембранный потенциал ( потенциал покоя , см. с. 340) составляет от -0,05 до -0,09 В, т.е. на внутренней стороне плазматической мембраны преобладает избыток отрицательных зарядов. Потенциал покоя обеспечивается прежде всего катионами Na + и K + , а также органическими анионами и ионом Cl - ( 1 ). Концентрации снаружи и внутри клетки и коэффициенты проницаемости этих ионов приведены в таблице ( 2 ).

Распределение ионов между внешней средой и внутренним объемом клетки описывается уравнением Нернста ( 3 ), где ΔΨ G — трансмембранный потенциал (в вольтах, В), т.е. разность электрических потенциалов между двумя сторонами мембраны при отсутствии транспорта ионов через мембрану ( потенциал равновесия ). Для одновалентных ионов при 25 о С множитель RT/Fn равен 0,026 В. Вместе с тем из таблицы ( 2 ) следует, что для ионов К + ΔΨ G примерно равно -0,09 В, т. е. величина того же порядка, что и потенциал покоя. Для ионов Na + , напротив, ΔΨ G = +0,07 В, т.е. выше, чем потенциал покоя. Поэтому ионы Na + поступают в клетку при открытии Na + -канала (см. с. 340). Неравенство концентраций ионов Na + и К + постоянно поддерживается Na + /K + -АТФ-азой при расходовании АТФ (см. с. 222).

Б. Протондвижущая сила

Ионы гидроксония («H + -ионы») также могут формировать электрохимический градиент. Такой протонный градиент имеет решающее значение для клеточного синтеза АТФ (см. с. 142). Как и в случае других ионов, свободная энергия переноса протона (разность между электрохимическими потенциалами протонов на двух сторонах мембраны) зависит от градиента концентрации, т. е. от разности рН (ΔpH) по ту и другую стороны мембраны. Кроме того, определенный вклад вносит и трансмембранный потенциал ΔΨ (см. А ). Обе эти величины формируют протондвижущую силу Δp, являющуюся мерой работы ΔΨ G , которую может совершать H + -градиент. Таким образом, протонный градиент через внутреннюю митохондриальную мембрану (см. с. 144) дает примерно 24 кДж на моль переносимых ионов H + .

В. Поддержание протонного градиента

Протонные градиенты формируются различными способами. Необычным протонным насосом является бактериородопсин ( 1 ), использующий энергию света (см. с. 130). При фотосинтезе (см. с. 134) восстановленный пластохинон (QH 2 ) переносит протоны вместе с электронами через мембрану (Q-цикл, 2 ). Образование протонного градиента в дыхательной цепи (см. с. 142) также сопряжено с окислительно-восстановительным процессом. В комплексе III, по-видимому, как и при фотосинтезе, за перенос прогона ответствен Q-цикл (не показано). В цитохром с-оксидазе (комплекс IV, 3 ) H + -транспорт сопряжен с электронным потоком от цитохрома с на О 2 .

В каждом из этих случаев протонный градиент используется в синтезе АТФ АТФ-синтазой ( 4 ). АТФ-синтаза состоит из двух компонентов: канала протонов (F 0 ) и управляемого им белкового комплекса (F 1 ), который трансформирует энергию потока протонов через мембрану в химическую энергию АТФ (см. с. 144).

Мембранный потенциал и электрохимический градиент

Мембранный потенциал и электрохимический градиент

• Мембранный потенциал возникает за счет электрохимического градиента, который существует по обеим сторонам мембраны, селективно проницаемой для ионов

• Величина мембранного потенциала как функции концентрации ионов рассчитывается по уравнению Нернста

• В клетке поддерживается отрицательное значение мембранного потенциала покоя. При этом внутренняя среда клетки, по сравнению с внешней, характеризуется несколько большим отрицательным зарядом

• Существование мембранного потенциала является необходимым условием генерации электрических сигналов, а также направленного транспорта ионов через мембрану

Важным свойством клеток является способность поддерживать такие внутриклеточные концентрации метаболитов, которые существенно отличаются от их содержания во внеклеточной среде. В случае ионов, различия в их концентрации по обеим сторонам мембраны приводят к различиям в электрическом заряде: внутриклеточная среда заряжена несколько более отрицательно, чем среда снаружи клетки. Совместное действие разности зарядов и концентраций проводит к возникновению электрохимического градиента. Электрохимический градиент поддерживается за счет действия селективных каналов и белков переносчиков в плазматической мембране.

Для того чтобы понять, каким образом возникает электрохимический градиент, вначале рассмотрим простой случай, когда мембрана оказывается проницаемой только для одного вида ионов. На рисунке ниже представлены два компартмента, А и В, разделенные тонкой мембраной. Эти компартменты содержат раствор КС1 разной концентрации. В растворе хлорид калия диссоциирован на гидратированные ионы К+ и Cl-. Поскольку оба компартмента содержат эквимолярные концентрации ионов, то каждый обладает нейтральным зарядом.

Если бы мембрана была непроницаема для ионов, то величина ее электрического потенциала, измеренная с помощью вольтметра, равнялась бы нулю.

Мембранный потенциал

Селективное передвижение ионов через мембрану вызывает изменение мембранного потенциала.

Теперь рассмотрим случай, когда мембрана проницаема только для ионов калия (например, когда в мембране находятся К+-каналы). Диффузия растворенных веществ по градиенту концентрации является энергетически выгодным процессом (выражается в виде отрицательной величины разности энергии AG). Поэтому ионы К+ будут диффундировать в сторону более низкой их концентрации, т. е. из компартмента В в компартмент А. При этом распределение заряда на мембране будет меняться. По мере накопления в компартменте А положительно заряженных ионов, возрастают силы отталкивания между ними. Эти силы затрудняют переход ионов К+ в компартмент А.

Когда в системе достигается электрохимическое равновесие, градиенты концентрации и электрических зарядов взаимно уравновешиваются, и движение ионов К+ через мембрану прекращается. При этом транспорт ионов К+ из одного компартмента сдерживается их транспортом из другого компартмента.

Однако в компартменте А содержится больше положительно заряженных ионов, чем в компартменте В. Этот избыток ионов К+ (в компартменте А) взаимодействует с избытком ионов Cl- (в компартменте В) через тонкую мембрану, в результате чего по обеим ее сторонам выстраиваются электрические заряды. Разница зарядов по обеим сторонам мембраны выражается в виде разности потенциалов и называется мембранный потенциал. Равновесный (мембранный) потенциал компартмента В по отношению к компартменту А имеет отрицательное значение.

Этот пример иллюстрирует необходимость наличия двух условий, необходимых для возникновения мембранного потенциала клетки, не равного нулю:
• различные концентрации ионов по обеим сторонам мембраны, которые приводят к разделению зарядов и
• мембрана, обладающая селективной проницаемостью по крайней мере к одному виду ионов.

Поэтому величина мембранного потенциала является функцией концентрации ионов. В состоянии равновесия эту функцию для ионов X можно выразить количественно с помощью уравнения Нернста:

• Е — равновесный потенциал (в вольтах)
• R — универсальная газовая постоянная (2 кал моль -1 К -1 )
• Т — абсолютная температура (К; 37 °С = 307,5 К)
• z — валентность ионов (электрический заряд)
• F — число Фарадея (2,3 х 10 4 кал вольт -1 моль -1 )
• [Х]А — концентрация свободных ионов X в компартменте А
• [Х]в — концентрация свободных ионов X в компартменте В

В формировании мембранного потенциала в клетках животных, главным образом, участвуют ионы К+, Na+ и Cl-. Ионы Са2+ и Mg2+ в меньшей степени участвуют в формировании мембранного потенциала покоя. Плазматическая мембрана обладает селективной проницаемостью к перечисленным ионам (т. е. мембрана содержит ионные каналы, селективные к каждому типу ионов). Это обстоятельство, а также мембранная проницаемость (Р) для каждого иона учитывается в уравнении Гольдмана-Ходжкина-Каца, которое представляет собой расширенную форму уравнения Нернста.

Для основных ионов это уравнение выражает мембранный потенциал как функцию их проницаемости и концентрации внутри (i) и снаружи (о) клетки:


Величина отрицательного мембранного потенциала покоя зависит от типа клеток и колеблется от -200 мВ до -20 мВ. В клетках млекопитающих мембранный потенциал покоя в основном создается при работе К+-каналов и ионного насоса, который называется Na+/К+-АТФаза. Основной вклад в формирование отрицательного мембранного потенциала вносит небольшой поток ионов К+ через плазматическую мембрану. Этот поток осуществляется через К+-каналы, лишенные воротного механизма (т. н. калиевые каналы покоя).

В отличие от большинства других К+-каналов, которым необходим сигнал для открытия, эти каналы в клетке, обладающей определенным потенциалом покоя, открыты постоянно. В покоящейся клетке также открыты несколько каналов для других ионов. Движение ионов К+ из клетки, по направлению электрохимического градиента, помогает клеточному содержимому поддерживать отрицательный заряд. Пока мы не знаем всех источников ионов калия, которые участвуют в этом процессе. В некоторых клетках, например у растений и бактерий, а также в митохондриях, мембранный потенциал покоя создается за счет градиента протонов, а не ионов К+.

Для того чтобы происходила диффузия ионов К+ из клетки через К+-каналы, их концентрация в клетке должна быть выше, чем в окружающей среде. Градиент концентрации создается в результате работы Na+/К+-АТФа-зы, которая закачивает в клетку два иона калия на каждые три иона натрия, которые этот ионный насос удаляет из клетки. Поэтому насос функционирует как генератор заряда: удаляется больше электрических зарядов, чем привносится к клетку. Таким образом, наряду с K+-каналами, лишенными воротного механизма, Na+/К+-АТФазы участвуют в создании отрицательного внутриклеточного потенциала. Если происходит инактивация Na+/K+-АТФаз, то концентрации ионов Na+ и К+ по обе стороны мембраны уравниваются. Это происходит потому, что липидный бислой очень плохо пропускает ионы. Иными словами, без прохождения первичных процессов активного транспорта с участием Na+/К+-АТФаз значение мембранного потенциала равнялось бы нулю.

Мембранный потенциал покоящейся клетки представляет собой довольно постоянную величину. Однако при связывании лигандов, механическом стрессе или при изменении электрического заряда происходит открытие специфических ионных каналов, и мембранный потенциал изменяется. Если ионные каналы находятся под контролем электрического заряда, то изменения мембранного потенциала влияют на прохождение через них ионов. Открытие и закрытие канала контролируются воротным механизмом (гейтингом). Мембранный потенциал зависит от тех ионов, для которых каналы в основном, открыты. Например, при открытии Na+- или Са2+-каналов происходит деполяризация мембраны.

При этом соответствующие ионы начинают поступать в клетку в направлении их электрохимического градиента. Это приводит к тому, что мембранный потенциал становится более положительным. Напротив, при реполяризации мембраны (гиперполяризации) потенциал становится еще более отрицательным. Это происходит при открытии калиевых каналов и выходе из клетки ионов К+ в направлении градиента, что и влечет за собой увеличение отрицательного мембранного потенциала. Движение ионов по ионным каналам происходит быстро и исчисляется миллисекундами. Для изменения мембранного потенциала достаточны лишь незначительные различия в концентрации ионов по сторонам мембраны, и основная концентрация их в клетке не меняется.
Поток лишь 10 -12 моль К+ через 1 см2 мембраны приводит к ее быстрой гиперполяризации и к установлению мембранного потенциала, равного -100 мВ. Локальное передвижение относительно небольших зарядов через мембрану позволяет цитозолю и внеклеточной среде оставаться электрически нейтральными и сводит к минимуму электрическое отталкивание зарядов.

С энергетической точки зрения, мембранный потенциал представляет собой некий энергетический резервуар, энергию которого можно использовать для выполнения определенной работы. По расположению отрицательно заряженных ионов в цитозоле и положительно заряженных на наружной стороне мембраны, клетка напоминает электрический конденсатор или батарею, т. е. приспособление, способное сохранять электрическую энергию и служить ее источником. Энергия высвобождается в виде ионов, мигрирующих по направлению их электрохимического градиента, и может использоваться в процессах транспорта других ионов или метаболитов против градиента концентрации.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

А. Электрохимический градиент

В то время как искусственная липидная мембрана для ионов практически не проницаема, биологические мембраны содержат «ионные каналы», по которым отдельные ионы избирательно проникают через мембрану (см. Транспортные процессы). Проницаемость и полярность мембраны зависят от электрохимического градиента, то есть от концентраций ионов по обе стороны мембраны (концентрационного градиента) и от разности электрических потенциалов между внутренней и внешней сторонами мембраны (мембранного потенциала).

В состоянии покоя клеток мембранный потенциал (потенциал покоя, см. Потенциал покоя и потенциал действия) составляет от −0,05 до −0,09 В, то есть на внутренней стороне плазматической мембраны преобладает избыток отрицательных зарядов. Потенциал покоя обеспечивается прежде всего катионами Na + и K + , а также органическими анионами и ионом Cl - (1). Концентрации снаружи и внутри клетки и коэффициенты проницаемости этих ионов приведены в таблице (2).

Распределение ионов между внешней средой и внутренним объёмом клетки описывается уравнением Нернста (3), где ΔΨG — трансмембранный потенциал (в вольтах, В), то есть разность электрических потенциалов между двумя сторонами мембраны при отсутствии транспорта ионов через мембрану (потенциал равновесия). Для одновалентных ионов при 25°С множитель RT/Fn равен 0,026 В. Вместе с тем из таблицы (2) следует, что для ионов K + ΔΨG примерно равно −0,09 В, т. е. величина того же порядка, что и потенциал покоя. Для ионов Na + , напротив, ΔΨG ≈ +0,07 В, то есть выше, чем потенциал покоя. Поэтому ионы Na + поступают в клетку при открытии Na + -канала. Неравенство концентраций ионов Na + и K + постоянно поддерживается Na + /K + -АТФ-азой при расходовании АТФ (см. Транспортные белки).

Метаболизм. Энергетика / Сохранение энергии на мембранах

Статьи раздела «Сохранение энергии на мембранах»:

Структура:

Списки:

Сложность материала:

Величины и единицы:

Микробиология
Книга состоит из двух частей: общей и специальной. В общей дано описание .

How to Build a Dinosaur: The New Science of Reverse Evolution
A world-renowned paleontologist reveals groundbreaking science that trumps science fiction: how to grow a living dinosaur Over a decade after Jurassic .

Биофизическая химия. В 3 томах. Том 3
В книге изложены представления о биологических макромолекулах и методах .

Культура животной ткани вне организма
В стенограмме публичной лекции характеризуется метод тканевых культур и .

Справочное издание в наглядной форме — в виде цветных схем — описывает все биохимические процессы. Рассмотрены биохимически важные химические соединения, их строение и свойства, основные процессы с их участием, а также механизмы и биохимия важнейших процессов в живой природе. Для студентов и преподавателей химических, биологических и медицинских вузов, биохимиков, биологов, медиков, а также всех интересующихся процессами жизнедеятельности.

Электрохимический градиент

Диаграмма концентраций ионов и зарядов, пересекающих полупроницаемую клеточную мембрану. Видно как ионы Na + и Cl - движутся во внутрь клетки, а ионы K + стремятся наружу, вследствие разницы концентраций.

Электрохими́ческий градиéнт, или градиéнт электрохимического потенциáла, — совокупность градиента концентрации и мембранного потенциала, которая определяет направление движения ионов через мембрану. Состоит из двух составляющих: химического градиента (градиента концентрации), или разницы в концентрациях растворённого вещества по обе стороны мембраны, и электрического градиента (мембранного потенциала), или разницы зарядов, расположенных на противоположных сторонах мембраны. Градиент возникает вследствие неодинаковой концентрации ионов на противоположных сторонах водопроницаемой мембраны. Ионы двигаются через мембрану из области, имеющую более высокую концентрацию в область с более низкой концентрацией путём простой диффузии. Также ионы несут электрический заряд, который формирует электрический потенциал на мембране (мембранный потенциал). Если существует неравномерное распределение зарядов по обе стороны мембраны, то разница в электрическом потенциале порождает силу, которая приводит к ионной диффузии, пока заряды по обе стороны не будут сбалансированы [1] .

Содержание

Обзор

Электрохимический потенциал используется в электроаналитической химии, а в промышленности применяется при изготовлении батареек и топливных элементов. Он представляет собой одну из многих взаимозаменяемых форм потенциальной энергии, в форме которых возможно сохранение энергии.

В биологических процессах ионы проходят через мембрану путём диффузии или активного транспорта, определяемую электрохимическим градиентом. В митохондриях и хлоропластах протонные градиенты используются для генерации хемиосмотического потенциала, который также известен как протон-движущая сила Δp или ΔμH + . Эта потенциальная энергия используется для синтеза АТФ посредством окислительного фосфорилирования или фотофосфорилирования [2] . Протон-движущая сила согласно хемиосмотической теории Митчелла является общим продуктом сопряжённых процессов дыхания и окислительного фосфорилирования. Она складывается из двух факторов: химического (или осмотического) — разности концентраций ионов H + , в митохондриальном матриксе и межмембранном пространстве, и электрического — обусловленного разностью электрических зарядов, расположенных на противоположных сторонах мембраны. Разность концентраций ионов H + , измеряемая в единицах pH, обозначается ΔpH. Разность электрических потенциалов обозначается символом Δψ. Следовательно, уравнение принимает вид [3] :

разности концентраций ионов H + (химический градиент) на А(+)-стороне и B(-)-cтороне мембраны.

Связь между ΔμH + и F (число Фарадея) Митчелл определил как:

ΔμH + = 1 кДж*моль соответствует Δp = 10,4 мВ. При температуре 25° С (298 К) это уравнение приобретает следующий вид:

Электрохимический градиент включает в себя два компонента. Первый компонент — электрический градиент, который обусловлен разницей заряда на противоположных сторонах липидной мембраны. Второй компонент — химический градиент, вызывается дифференциальной (различной) концентрацией ионов, располагающихся на противоположных сторонах мембраны. Сочетание этих двух факторов определяет термодинамически выгодное направление движения иона через мембрану [1] [5] .

Электрохимический градиент похож на давление воды, которое она оказывает при протекании через плотину гидроэлектростанции. Мембранные транспортные белки, такие как натрий-калиевая АТФаза, аналогичны турбинам, преобразующим потенциальную энергию воды в другие формы физической или химической энергии, а ионы, которые проходят через мембрану, аналогичны воде, которая падает на дно плотины. Кроме того, энергия может быть использована для перекачки воды в озеро, располагающееся выше по течению от плотины. Аналогичным образом, химическая энергия в клетках может быть использована для создания электрохимических градиентов [6] [7] .

Химия

Термин «электрохимический потенциал» обычно применяется в тех случаях, когда должна произойти химическая реакция, например, с переносом электрона в электрической батарее. В аккумуляторах электрохимический потенциал, возникающий от движения ионов, уравновешивает энергию реакции электродов. Максимальное напряжение, которое может произвести реакция батареи, называют стандартным электрохимическим потенциалом данной реакции. Наряду с макроэргическими соединениями химическая энергия может запасаться на биологических мембранах, функционирующих подобно конденсаторам, которые выступают в роли изолирующего слоя для заряжённых ионов [3] .

Биологическое значение

Генерация трансмембранного электрического потенциала посредством движения ионов через клеточную мембрану приводит к возникновению биологических процессов, таких как нервная проводимость, сокращение мышц, секреция гормонов и сенсорные реакции. Считается, на мембране типичной животной клетки имеется трансмембранный электрический потенциал от -50 мВ до -70 мВ [8] .

Электрохимические градиенты также играют определённую роль в установлении протонных градиентов окислительного фосфорилирования в митохондриях. Конечной стадией клеточного дыхания является цепь переноса электронов. Четыре встроенных комплекса во внутренней мембране митохондрии (кристах) составляют цепь переноса электронов. Однако только комплексы I, III и IV являются протонными насосами и перекачивают протоны из матрикса в межмембранное пространство. Суммарно получается десять протонов, которые перемещаются из матрикса в межмембранное пространство, генерируя электрохимический потенциал более 200 мВ. Это приводит в движение поток протонов обратно в матрикс через АТФ-синтазу, которая синтезирует АТФ путём присоединения неорганического фосфата к молекуле АДФ [9] . Таким образом, генерация протонного электрохимического градиента имеет решающее значение для синтеза энергии в митохондриях [10] . Общее уравнение для цепи переноса электронов выглядит так:

Подобно дыхательной цепи переноса электронов действует и электронтранспортная цепь фотосинтеза в растениях, где происходит закачка протонов в люмен хлоропластов (просвет тилакоидов), а полученный градиент используется для синтеза АТФ посредством фермента АТФ-синтазы. Протонный градиент может быть сгенерирован с помощью нециклического или циклического фотофосфорилирования. Белки, которые участвуют в нециклическом фотофосфорилировании, фотосистема II (ФСII) и цитохром-b6f-комплекс непосредственно способны к генерации протонного градиента. На каждый из четырёх фотонов, поглощаемых ФСII, приходится восемь протонов, которые перекачивается в люмен (просвет тилакоида) из стромы [12] . Общее уравнение для фотофосфорилирования выглядит следующим образом:

2 H 2 O + 6 H + ( s t r o m a ) + 2 N A D P + ⟶ O 2 + 8 H + ( l u m e n ) + 2 N A D P H O+6H^(stroma)+2NADP^\longrightarrow O_+8H^(lumen)+2NADPH> [13] .

Несколько других транспортёров и ионных каналов играют роль в генерации протонного электрохимического градиента. Одним из них является TPK3-калиевый ионный канал, активируемый ионами Са 2+ . Он перемещает ионы K + из люмена в строму, которые помогают установить градиент рН (градиент концентрации) внутри стромы. С другой стороны, электронейтральный антипортер K + (KEA3) транспортирует ионы K + в люмена, а Н + в строму, поддерживая баланс ионов и не нарушая электрическое поле [14] .

Ионный градиент

Протонные градиенты

Протонные градиенты имеют важное значение как одна из форм накопления энергии во многих различных типах клеток. Градиент обычно используется для работы АТФ-синтазы, вращения жгутика, или переноса метаболитов через мембрану [18] . В этом разделе основное внимание будет уделёно трём процессам, которые помогают установить протонные градиенты в соответствующих клетках: работе бактериородопсина, нециклическому фотофосфорилированию и окислительному фосфорилированию.

Бактериородопсин


Бактериородопсин, обнаруженный в археях, формирует путь для градиента протонов, посредством протонного насоса. Работа протонного насоса опирается на переносчик протонов (родопсин), который движется от стороны мембраны с низкой концентрацией ионов H + к стороне с более высокой концентрацией H + . Протонный насос бактериородопсина активируется путём поглощения фотонов с длиной волны 568 нм, это приводит к фотоизомеризации основания Шиффа (SB) в ретинале, вызывая его переход из транс- в 13-цис-форму. Фотоизомеризация чрезвычайно быстра и занимает всего 200 фемтосекунд. Как следствие, родопсин претерпевает ряд быстрых конформационных перестроек: происходит смещение основания Шиффа от остатков Asp85 и Asp212, вызывая передачу ионов H + остатку Asp85, при этом формируется состояние M1 (мета-I). Затем белок переходит к состоянию М2 (мета-II) посредством отделения остатка Glu204 от Glu194, который высвобождает протон во внешнюю среду. Такое состояние является сравнительно долгоживущим. Основание Шиффа репротонируется по остатку Asp85, формируя состояние N. Важно, что второй протон происходит от Asp96, так как его депротонированное состояние неустойчиво и быстро репротонируется (повторно протонируется) протоном из цитоплазмы. Протонирование Asp85 и Asp96 приводят к повторной изомеризации SB, формируя при этом состояние O. Также при этом остаток Asp85 высвобождает свой протон на Glu204 и бактериородопсин возвращается в состояние покоя [18] [19] .

Фотофосфорилирование

Фотосистема II (ФСII) также использует энергию света для создания протонных градиентов в хлоропластах, однако, для достижения этой цели ФСII использует векторальные (однонаправленные) окислительно-восстановительные реакции. Поглощение фотонов с длиной волны 680 нм используется для возбуждения двух электронов в пигменте Р680 с переходом на более высокий энергетический уровень. Эти электроны с высокой энергией передаются к белок-связанному пластохинону (PQA), а затем к несвязанному пластохинону (PQB), что приводит к восстановлению последнего с образованием пластохинола (PQH2), который высвобождается из ФСII после присоединения двух протонов, поступивших из стромы. Электроны в P680 пополняются путём окисления воды посредством водоокисляющего комплекса (ВОК) [18] . При этом происходит выделение молекул О2 и Н + в просвет тилакоида (люмен). Общее уравнение реакции выглядит следующим образом:

4 p h o t o n s ( 680 n m ) + 2 H 2 O + 2 P Q + 4 H + ( s t r o m a ) ⟶ O 2 + 2 P Q H 2 + 4 H + ( l u m e n ) O\ +\ 2PQ\ +\ 4H^(stroma)\longrightarrow O_\ +\ 2PQH_\ +\ 4H^(lumen)> [18] .

После освобождения из ФСII восстановленный пластохинон PQH2 перемещается в цитохром-b6f-комплекс, который передает два электрона от PQH2 к белку пластоцианину в двух отдельных реакциях. Данный процесс похож на Q-цикл, происходящий в комплексе III ЭТЦ. В первой реакции пластохинол PQH2 связывается с комплексом со стороны люмена и один электрон переходит на железо-серный центр (Fe-S), который затем передаёт его на цитохром f, последний осуществляет передачу электрона на молекулу пластоцианина. Второй электрон переходит на молекулу гема bL, который затем передаёт его гему bH, последний передаёт электрон второй молекуле пластохинона PQ. Во второй реакции 2-ая молекула пластохинола PQH2 окисляется, передавая электрон другой молекуле пластоцианина и наполовину восстановленному PQ, который восстанавливается до PQH2 и покидает комплекс. Обе реакции сопровождаются переносом четырёх протонов в люмен [20] [21] .

Окислительное фосфорилирование

В дыхательной цепи переноса электронов комплекс I катализирует восстановление убихинона (UQ) до убихинола (UQH2) за счёт двух электронов от восстановленной молекулы никотинамидадениндинуклеотида (НАДН), и переносит четыре протона из матрикса митохондрии в межмембранное пространство по уравнению [22] :

Комплекс III катализирует Q-цикл. Первая часть данного цикла — перехода двух электронов от восстановленного в комплексе I убихинола (UQH2) к двум молекулами окисленного цитохрома с на участке Qo. Во второй части (на участке Qi) происходит передача ещё двух электронов от UQ к UQH2 и, соответственно, восстановление убихинона [22] . Общее уравнение процесса выглядит следующим образом:

2 c y t o c h r o m e c ( o x ) + U Q H 2 + 2 H + ( m a t r i x ) ⟶ 2 c y t o c h r o m e c ( r e d ) + U Q + 4 H + ( I M S ) \ +\ 2H^\ (matrix)\longrightarrow 2\ cytochrome\ c\ (red)\ +\ UQ\ +\ 4H^\ (IMS)> [22] .

Комплекс IV катализирует реакцию переноса двух электронов от восстановленного цитохрома в комплексе III на 1/2 молекулы кислорода (1/2О2). На одну полную молекулу кислорода (О2) требуется перенос четырёх электронов. Помимо четырёх электронов к молекуле кислорода присоединяются четыре протона (4H + ), поступающих из матрикса, с образованием молекулы воды. Полное уравнение процесса выглядит так:

2 c y t o c h r o m e c ( r e d ) + 4 H + ( m a t r i x ) + 1 / 2 O 2 ⟶ 2 c y t o c h r o m e c ( o x ) + 2 H + ( I M S ) + H 2 O \ (matrix)\ +\ 1/2\ O_\longrightarrow 2\ cytochrome\ c\ (ox)\ +\ 2H^\ (IMS)\ +\ H_O> [22] .

Читайте также: