Митохондриальный геном. Наследование

Обновлено: 23.04.2024

Генетическая информация определяет рост, развитие, строение, обмен веществ, психологический склад человека, а также предрасположенность к различным заболеваниям. Эта информация зашифрована в ДНК, которая представлена не только в ядре клетки, но и в органеллах (митохондриях), необходимых для превращения химической энергии из пищи в формы, необходимые клетке – это так называемая митохондриальная ДНК.

Митохондрии – это "энергетические станции" клетки, без которых она не сможет существовать. Митохондрии имеют собственную генетическую информацию, зашифрованную в митохондриальной ДНК. Когда-то митохондрии представляли собой бактерии. Но, попав в эукариотические клетки, они растеряли часть своей генетической информации, часть отдали в ядро клетки-хозяина, и сейчас митохондриальная ДНК состоит всего лишь из 37 генов, необходимых для окисления глюкозы до углекислого газа и воды и синтеза клеточного "топлива": АТФ (аденозинтрифосфат) и НАДН (восстановленная форма никотинамидадениндинуклеотида).

Митохондриальная ДНК передается от матери ко всем ее детям, от дочерей к внукам. Почему же так происходит? Почему мы не можем унаследовать митохондриальную ДНК от отца?

Яйцеклетки (женские половые клетки) содержат огромное количество митохондрий, в сотни, а то и в тысячи раз больше, чем содержат сперматозоиды (мужские половые клетки), которым митохондрии необходимы в основном только для движения. При оплодотворении сперматозоид проникает в яйцеклетку, зачастую теряя свой жгутик и митохондрии, которые находятся в основании жгутика. Затем сперматозоид сливается с яйцеклеткой, происходит образование зиготы. Митохондрии сперматозоида, меченные убиквитинином, разрушаются ооцитом, и ядро сперматозоида сливается с ядром яйцеклетки (Рисунок 1), давая начало новой жизни.

Образование зиготы. Все клетки человека кроме половых клеток несут диплоидный набор хромосом (46 хромосом). В ядрах половых клеток находится гаплоидный набор хромосом (23 хромосомы). После слияния сперматозоида с яйцеклеткой образуется зигота, формируются мужской и женские нуклеусы (в них находится по 23 хромосомы), которые сближаются и сливаются в ядро зиготы. С этого момента клетка становится диплоидной (несет двойной набор хромосом) и начинается деление клетки.

Рисунок 1. Образование зиготы. Все клетки человека, кроме половых, несут диплоидный набор хромосом (46 хромосом). В ядрах половых клеток находится гаплоидный набор хромосом (23 хромосомы). После слияния сперматозоида с яйцеклеткой образуется зигота, формируются мужской и женские нуклеусы (в них находится по 23 хромосомы), которые сближаются и сливаются в ядро зиготы. С этого момента клетка становится диплоидной (несет двойной набор хромосом), и начинается деление клетки.

Митохондриальная ДНК наследуется по материнской линии. И мужчины, и женщины получают митохондрии из цитоплазмы материнской яйцеклетки. Эти маленькие двуспиральные цепочки ДНК тянутся к нам из далекого прошлого, со времен проматери "митохондриальной Евы", которая являлась общим предком всех ныне живущих людей по материнской линии. Если ядерную ДНК, которая представлена 46-ю хромосомами, ребенок наследует от обоих родителей (половину – 23 – от матери, половину от отца), то митохондрии и мтДНК ребенок получает только от матери (Рисунок 2). Именно поэтому митохондриальная ДНК является идеальным объектом для генетической экспертизы родственных связей по материнской линии. Но если в случае установления отцовства используются полиморфизмы длин амплифицированных фрагментов (ПДАФ), то генетическая экспертиза митохондриальной ДНК представляет собой выявление индивидуальных точковых нуклеотидных изменений в ДНК митохондрий, их отождествление или дифференцировку. В митохондриальной ДНК гены очень плотно "упакованы". Несмотря на то что в мтДНК очень мало тандемных повторов, она буквально "напичкана" точковыми мутациями, что делает ее весьма вариабельной (это значит, что она совсем разная у людей, не имеющих общих предков по материнской линии). Именно эти мутации детектируют и анализируют с помощью секвенаторов нового поколения при исследовании митохондриальной ДНК.

Принцип наследования мтДНК. В виде разноцветных кругов показано различающиеся копии мтДНК.

Рисунок 2. Принцип наследования мтДНК. В виде разноцветных кругов показаны различающиеся копии мтДНК.

Митохондриальная ДНК обладает рядом особенностей, которые отличают ее от ядерной ДНК и позволяют использовать при генетической экспертизе:

  • мтДНК не подвержена рекомбинации, поэтому вся молекула изменяется только путем мутирования на протяжении тысячелетий;
  • данный тип ДНК наследуется только по материнской линии;
  • мтДНК можно выделить из любого биологического материала;
  • благодаря большому количеству копий мтДНК иногда может быть единственным источником ДНК - например, при сильно деградированной ядерной ДНК или недостаточности биологического материала;
  • высокий мутационный уровень мтДНК, по сравнению с одной копией ядерной ДНК, увеличивает идентификационный уровень генетической экспертизы.

В каких случаях необходимо проведение генетической экспертизы митохондриальной ДНК (мтДНК)?

  • для установления родственной связи между двумя женщинами или женщиной и мужчиной у предполагаемых родственников по материнской линии. Например, дед/бабка-внук, дядя/тетя-племянник, брат-сестра;
  • при исследовании крайне малого объема биологического материала. Количество копий мтДНК в одной клетке составляет 100-10 000, в то время как в ядерной ДНК всего лишь по две пары каждой из 23 хромосом;
  • при исследовании образцов десятилетней, столетней и даже тысячелетней давности. Так, например, по мтДНК удалось идентифицировать останки членов российской императорской семьи Романовых.
  • за неимением другого генетического материала. Например, при наличии всего лишь одного волоса. Ствол (стержень) волоса содержит незначительное количество ядерной ДНК, но является хорошим источником митохондриальной ДНК;
  • для определения принадлежности генетического профиля той или иной генеалогической ветви человечества (европейской гаплогруппе, африканской, ближневосточной, американской и т.д.). Таким образом, можно определить происхождение человека.

Какие материалы необходимо предоставить для проведения генетической экспертизы митохондриальной ДНК (мтДНК)?

Митохондриальная ДНК присутствует во всех клетках организма. Она находится даже в тех клетках организма, в которых отсутствует ядро (тромбоциты, эритроциты, клетки стержня волос и т.д.). Поэтому для получения мтДНК подходят любые ткани организма: кости, зубы, кровь, сперма, фрагменты скелетированных трупов, фрагменты частей тела и многое другое. Обычно, как и при генетической экспертизе по установлению отцовства или материнства, берутся образцы буккального эпителия (соскоб ватной палочкой с внутренней стороны щеки), кровь из пальца в объеме 0,3-0,5 мл, кровь на ватном диске, волосы или ногти. Взятие образцов тканей осуществляется в соответствии со следующими законами:

  • ст. 35 Федерального закона от 31 мая 2001 г. №73-ФЗ "О государственной судебно-экспертной деятельности в Российской Федерации";
  • п. 84.4 "Порядок организации и производства судебно-медицинских экспертиз в государственных судебно-экспертных учреждениях Российской Федерации" (Приказ Минздравсоцразвития РФ №346н от 12.05.2010 г.).

Эксперты-генетики после получения биологического материала направляются в специализированную лабораторию, где полученный биоматериал последовательно проходит три этапа исследования: 1) выделение мтДНК; 2) амплифицирование (многократное умножение) определенного локуса мтДНК; 3) определение первичной последовательности нуклеотидов амплифицированного локуса.

На первом этапе эксперт производит выделение ДНК из полученного материала. Выделение митохондриальной ДНК из клеток является очень сложным процессом и в некоторых случаях может продлиться 24 часа. Например, весь процесс выделения митохондриальной ДНК из крови составляет около двух часов, в то время как для того, чтобы только лизировать (разрушить) ткань волоса или ногтя, приходится обрабатывать ее соответствующим ферментом около 12 часов. В большинстве случаев для этих целей используются коммерческие наборы реактивов ведущих зарубежных фирм-производителей, таких как Applied Biosystems (США), Promega (США), QIAGEN (Германия).

На втором этапе анализа производят полимеразно-цепную реакцию (ПЦР-реакцию), в результате которой определенный участок мтДНК (D-петля, или так называемая петля смещения) многократно увеличивается. Именно анализ нуклеотидной последовательности D-петли является дифференцирующим признаком при исследовании мтДНК. Высокий уровень вариабельности D-петли обусловлен тем, что у разных людей этот участок может иметь разную первичную последовательность нуклеотидов (так называемых "кирпичиков", из которых построена ДНК). В популяции обнаруживается целый набор вариантов, отличающихся друг от друга наличием различных мутаций: точковых нуклеотидных замен, микроделеций и микроинсерций. У каждого индивидуума в популяции имеется в норме только один такой вариант, который этот индивидуум унаследовал по своей материнской линии. Как следствие, полинуклеотидная D-петля обладает свойством индивидуальной специфичности.

На следующем этапе производят очистку амплифицированного участка митохондриальной ДНК и его секвенирование. Секвенирование – это определение первичной последовательности ДНК, иными словами - расшифровка генетического кода, который в принципе уникален для каждого организма. Сравнивая нуклеотидные последовательности D-петли из разных образцов, эксперт устанавливает степень их соответствия друг другу, а также сравнивает их с референсной последовательностью мтДНК. Расчет несовпадения нуклеотидов (мутаций) ДНК осуществляется согласно ст. 3.6 Методических указаний Минздрава РФ №2001/4 от 25.01.2001 г. "Применение молекулярно-генетической индивидуализирующей системы на основе полиморфизма нуклеотидных последовательностей митохондриальной ДНК в судебно-медицинской экспертизе идентификации личности и установления биологического родства". В выводах генетической экспертизы митохондриальной ДНК указывается вероятность совпадения признаков, выраженная в процентах.

Все результаты тестирования мтДНК сравнивают с так называемой "стандартной кембриджской последовательностью". Это первая нуклеотидная последовательность митохондриальной ДНК, которая была расшифрована. Данная работа была выполнена в 1981 году в Кембридже Стеном Андерсеном, за что последовательность мтДНК получила второе название - "последовательность Андерсена" (в англоязычной литературе). Поскольку это была первая последовательность мтДНК, ее и взяли за международный стандарт. В настоящее время все мутации в анализируемой последовательности отсчитывают от нее. Сравнивая нуклеотидную последовательность исследуемой мтДНК со стандартной кембриджской последовательностью, устанавливают генетический профиль исследуемой мтДНК, то есть дают ему индивидуальную генетическую характеристику.

По генетическому профилю устанавливают, к какой расе или гаплогруппе относится исследуемая митохондриальная ДНК (и соответственно человек, которому она принадлежит). Следовательно, генетическая экспертиза митохондриальной ДНК позволяет построить ДНК-генеалогию и в определенных случаях предвидеть внешность разыскиваемого человека. Если по Y-хромосоме ученые пытаются найти предполагаемого Адама, то по генетическому профилю мтДНК можно найти предполагаемую Еву.

Генетическая экспертиза митохондриальной ДНК отвечает на два главных вопроса:

  1. Имеются ли совпадения нуклеотидных последовательностей мтДНК у анализируемых биологических образцов? Для этого по определенным правилам сопоставляют полученные индивидуальные профили полиморфизма анализируемых фрагментов ДНК с целью их отождествления или выявления сходства и различий и установления на этом основании определенных фактов, которые могут иметь доказательственное значение по делу.
  2. Если совпадение признаков установлено, то какова вероятность того, что это совпадение закономерно, а не является случайностью?

Нормативно-правовые документы, определяющие порядок проведения в Российской Федерации генетической экспертизы митохондриальной ДНК:

  • Федеральный закон от 31 мая 2001 г. №73-ФЗ "О государственной судебно-экспертной деятельности в Российской Федерации";
  • Приказ Минздравсоцразвития РФ №346н от 12.05.2010 г. "Об утверждении Порядка организации и производства судебно-медицинских экспертиз";
  • Методические указания Минздрава РФ №2001/4 от 25.01.2001 г. "Применение молекулярно-генетической индивидуализирующей системы на основе полиморфизма нуклеотидных последовательностей митохондриальной ДНК в судебно-медицинской экспертизе идентификации личности и установления биологического родства";
  • Семейный кодекс РФ. Глава 10 "Установление происхождения детей".

Проведение экспертизы по уголовному делу

Согласно Постановлению Пленума Верховного Суда Российской Федерации от 21 декабря 2010 г. N 28 "О судебной экспертизе по уголовным делам" экспертиза по уголовному делу может быть проведена либо государственным экспертным учреждением, либо некоммерческой организацией, созданной в соответствии с Гражданским кодексом Российской Федерации и Федеральным законом "О некоммерческих организациях", осуществляющих судебно-экспертную деятельность в соответствии с принятыми ими уставами.

Коммерческие организации и лаборатории, индивидуальные предприниматели, образовательные учреждения, а также некоммерческие организации, для которых экспертная деятельность не является уставной, не имеют право проводить экспертизу по уголовному делу. Экспертиза, подготовленная указанными организациями в рамках уголовного процесса, может быть признана недопустимым доказательством, т.е. доказательством, полученным с нарушением требований процессуального закона.

Недопустимые доказательства не могут использоваться в процессе доказывания, в том числе, исследоваться или оглашаться в судебном заседании, и подлежат исключению из материалов уголовного дела.

Так как АНО "Судебный эксперт" является автономной некоммерческой организацией, а проведение судебных экспертиз является её основной уставной деятельностью (см. раздел "Документы организации"), то она имеет право проводить экспертизы в том числе и по уголовным делам.

Научная электронная библиотека


Митохондриальное (цитоплазматическое) наследование характерно для особого класса наследственной патологии – митохондриальных болезней. Каждая клетка содержит тысячи копий митохондриальной ДНК. Ряд редких болезней с необычной комбинацией неврологических и миопатических признаков, кардиомиопатии, диабет, как оказалось, возникают вследствие мутаций митохондриальных генов. Неудивительно, что головной мозг, мышцы и сердце поражаются в большей степени, поскольку эти органы наиболее энергозависимы. Митохондриальные болезни поражают оба пола, но передаются только через женщин (рис. 15). У большинства людей митохондриальная ДНК идентична во всех митохондриях (гомоплазмия). В случае мутаций ДНК в части митохондрий, у индивидуума будет две популяции митохондрий – нормальные и мутантные, т. е. гетероплазмия. Доля митохондрий с мутантной ДНК варьирует между клетками и тканями. Это является объяснением различной тяжести течения заболевания у людей с митохондриальными болезнями. Ряд митохондриальных белков кодируется ядерными генами, а мутации в них нарушают функцию митохондрий. Напрмер, мутации генов белков комплекса цитохрома С наследуются аутосомно-рецессивно, а мутации Х-сцепленного гена G4.5 (TAZ) вызывают синдром Барта (кардиоскелетную миопатию с нейтропенией и аномальными митохондриями) у мальчиков.


Рис. 15. Родословная при митохондриальном типе наследования

Множественные аллели и комплексные признаки

Выше рассмотрены признаки, с которыми связаны только два аллеля – нормальный и мутантный. Некоторые гены имеют более двух аллельных форм, т. е. множественные аллели. Некоторые из них могут быть доминантными, другие – рецессивными по отношению к нормальному аллелю. Пример множественных аллелей – наследование групп крови человека.

Развитие генетики сделало возможным исследование комплексных признаков, которые формируются при взаимодействии нескольких генов. На этой основе возникла концепция олигогенного (дигенного и триаллельного) наследования.

При дигенном наследовании наблюдается аддитивный эффект гетерозиготных мутаций в двух различных локусах. Например, одна из форм пигментного ретинита, приводящая к потере зрения, вызвана гетерозиготностью по мутациям двух генов (ROM1 и PRPH). Оба эти гена кодируют белки, присутствующие в фоторецепторах сетчатки глаза. Индивидуумы, гетерозиготные по мутации только одного из этих двух генов, не имеют клинических проявлений.

Триаллельное наследование можно рассмотреть на примере синдрома Барде-Бидля – редкого заболевания, характеризующегося ожирением, полидактилией, аномалиями почек, пигментным ретинитом и когнитивными нарушениями. Семь различных генных локусов, мутации в которых ведут к синдрому Барде–Бидля, были идентифицированы. До недавнего времени считалось, что заболевание наследуется аутосомно-рецессивно. Однако, сейчас известно, что есть одна форма синдрома, когда индивидуум, гомозиготный по мутациям одного локуса, является также гетерозиготным по мутации другого локуса. Таким образом, для того, чтобы заболевание проявлялось, необходимо три мутантных аллеля.

Антиципация. При некоторых аутосомно-доминантных болезнях манифестация симптомов более ранняя и течение болезни более тяжелое у потомков по сравнению с их родителями, также страдающими этим заболеванием. Феномен увеличения тяжести болезни из поколения в поколение называют антиципацией. Одним из объяснений антиципации является экспансия нестабильных триплетных повторов. В качестве примеров можно привести такие болезни экспансии триплетных повторов, как миотоническая дистрофия, хорея Гентингтона, болезнь Кеннеди.

Медики описали семейное наследование митохондриальной ДНК от отца


Исследователи описали случай наследования митохондриальной ДНК по отцовской линии у людей, сообщается в Proceedings of the National Academy of Sciences. Они обнаружили девять человек из трех семей, которые унаследовали до 76 процентов вариантов митохондриальной ДНК от отцов.

Митохондрии встречаются в большинстве эукариотических клеток. Основная их функция — обеспечение клеток энергией засчет синтеза АТФ, генерации электрического потенциала и термогенеза. В митохондриях есть свой небольшой геном (в человеческом содержится 16 569 пар оснований), которая у большинства организмов, в том числе у людей, наследуется по материнской линии. Однако у некоторых организмов, в том числе у больших синиц, мышей и людей часть митохондриальной ДНК изредка наследуется от отца. Ранее американские медики описали случай пациента с митохондриальной миопатией — наследственным заболеванием, которое приводит к мышечной слабости и непереносимости физических нагрузок. Оказалось, что болезнь развилась потому, что у мужчины в разных клетках содержались разные митохондриальные геномы — от отца и от матери. При этом в отцовской митохондриальной ДНК была мутация, которая и вызвала заболевание. Однако пациент оказался единственным членом семьи с миопатией. Его родители и сестра были здоровы, и, как показал скрининг, сестра унаследовала митохондриальную ДНК от матери.

Американские, тайваньские и китайские исследователи под руководством Палдипа Атвала (Paldeep Atwal) из клиники Мэйо в Джексонвилле и Таошеня Хуана (Taosheng Huang) из Медицинского центра детской больницы Цинциннати описали семейный случай наследования митохондриального генома по отцовской линии.

Первым, у кого обнаружили наследование митохондриального генома от отца, оказался мальчик четырех лет, поступивший в Медицинский центр детской больницы в Цинциннати. У него диагностировали мышечную боль, гипотонию, усталость, которые связали с дефектами в функционировании митохондрий. У остальных членов семьи А наблюдались другие симптомы (в частности, у дедушки был инфаркт, а у сестры — задержка развития речи), которые медики не связывали с мутациями в митохондриальной ДНК. Авторы исследования отсеквенировали митохондриальный геном мальчика, и, хотя не нашли в нем патогенных мутаций, обнаружили 31 гетероплазмический вариант. Гетероплазмией называют различия в последовательностях митохондриальной ДНК в одном организме, иногда даже в одной клетке. Ученые заинтересовались необычно высоким уровнем различий и стали анализировать митохондриальную ДНК других членов семьи А. В результате оказалось, что четыре человека унаследовали митохондриальный геном и от отца (примерно 40 процентов вариантов) и от матери.

Затем авторы привлекли к эксперименту еще две семьи — В и С. В одной из них у мужчины 35 лет, в другой у женщины 46 лет были диагностированы заболевания, предположительно вызванные мутациями в митохондриальном геноме. Исследователи отсеквенировали митохондриальные геномы пациентов и убедились в том, что в них, как и у членов семьи А содержится большое количество вариантов ДНК. При анализе митохондриальных ДНК у остальных членов семей В и С исследователи обнаружили, что двое членов семьи В и три человека из семьи С в разных поколениях унаследовали не только материнский, но и отцовский митохондриальные геномы. Причем один из представителей семьи С унаследовал 76 процентов вариантов из митохондриальной ДНК отца.

Как отмечают авторы работы, их результаты показывают, что в некоторых исключительных случаях передача митохондриального генома по отцовской линии у людей возможна, хотя конечно, основным все же остается наследование материнской митохондриальной ДНК. Возможно, передача отцовского генома сопровождается мутацией в гене ядерной ДНК, который связан с устранением отцовской митохондриальной ДНК.

Теоретически заболевания, вызванные мутациями в митохондриальной ДНК можно лечить, если при зачатии ребенка заменять дефектный геном донорским, взятым от другой женщины. Первый ребенок, рожденный от трех родителей появился на свет в 2016 году в Мексике, о втором таком случае в начале прошлого года сообщили украинские медики.

Митохондриальный геном. Наследование

Информация об исследовании:

Панель "Митохондриальный геном" включает анализ генов находящихся в митохондриальной ДНК и связанных с митохондриальным болезнями - гетерогенная группа системных расстройств, которые поражают преимущественно мышечную, нервную и нервно-мышечную системы. Наследование мутаций в митохондриальном геноме носит особый характер. Если гены, заключенные в ядерной ДНК, дети получают поровну от обоих родителей, то митохондриальные гены передаются потомкам только от матери . Это связано с тем, что всю цитоплазму с содержащимися в ней митохондриями потомки получают вместе с яйцеклеткой, в то время как в сперматозоидах цитоплазма практически отсутствует. По этой причине женщина с митохондриальным заболеванием передаёт его всем своим детям, а больной мужчина - нет. В нормальных условиях все митохондрии в клетке имеют одинаковую копию ДНК - гомоплазмия . Однако в митохондриальном геноме могут происходить мутации и вследствие параллельного существования мутированной и немутированной мтДНК возникает гетероплазмия . К настоящему времени известно более 200 заболеваний, вызванных мутацией мтДНК.

Виды генетических изменений, определяемых панелью "Митохондриальный геном":

  • Однонуклеотидные и мультинуклеотидные варианты (SNV и MNV) в экзонах всех клинически значимых генов;
  • Малые вставки-делеции (in/del) до 50 пар нуклеотидов в экзонах всех клинически значимых генов;

Показания для назначения панели "Митохондриальный геном":

  • Признаки поражения скелетных мышц - низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз;
  • Признаки поражения ССС - - нарушения сердечного ритма, гипертрофическая миокардиопатия;
  • Признаки поражения ЦНС - атрофия зрительного нерва, пигментная ретинопатия, миоклонус, деменция, инсультоподобные эпизоды, расстройства психики;
  • Признаки поражения - аксональная нейропатия, нарушения двигательной функции гастроинтестинального тракта;
  • Признаки поражения эндокринной системы: диабет, гипопаратиреоидизм, нарушение экзокринной функции панкреас, низкий рост.

Метод исследования: Секвенирование нового поколения (NGS).

Заключение по результатам исследования: В результате исследования может быть получена информация о тысячах генетических вариантов, которые, как правило, являются непатогенными, даже если и находятся в клинически значимых генах. Для оценки патогенности каждого обнаруженного варианта используются специальные алгоритмы, которые позволяют выделить только варианты, которые с наибольшей вероятностью могут быть патогенными. Таких вариантов может быть от нескольких до нескольких десятков. Если при заказе исследования пациент представил медицинскую документацию, то среди клинически значимых вариантов вариантов выбираются те, которые имеют отношение к фенотипу пациента. В заключение включаются только варианты, являющиеся патогенными и вероятно патогенными в соответствии с критериями ACMG или классифицированы таковыми в базе данных ClinVar и имеющие связь с фенотипом пациента. К заключению прилагается файл со всеми обнаруженными вариантами. Однако, следует знать, что интерпретация данных секвенирования является непростой задачей, требующих специальных знаний. Только врач-генетик, прошедший специальную подготовку может дать правильную консультацию по результатам исследования.

Как пройти исследование?

Сдать тест можно, в медицинских офисах лаборатории «Геномед», либо в медицинском центре партнера. Также, мы сможем организовать доставку биоматериала в нашу лабораторию из любого города РФ.

Материал для исследования: Венозная кровь с ЭДТА - 2-4 мл.

Подготовка к исследованию: Не требуется

Важно представить направление и выписки/заключения от врачей, которые потребуются для анализа данных исследования и составления заключения.

Предложен новый механизм наследования митохондриальной ДНК от отца

Рис. 1. Остатки былого величия

Полтора года назад «Элементы» рассказывали о работе, в которой были описаны трое пациентов, в чьих клетках обнаружилась митохондриальная ДНК, полученная по отцовской линии. Предполагалось, что митохондрии каким-то образом передавались от отца ребенку. В недавней статье в журнале Nature Communications предложено другое объяснение этому феномену. Ее авторы полагают, что ДНК из отцовских митохондрий частично встроилась в геном отцовских клеток. Поэтому то, что в течение полутора лет считали наследованием митохондрий, может оказаться наследованием митохондриальных генов в ядре.

Несмотря на то, что гены из митохондрий человека почти полностью мигрировали в ядро, 37 из них продолжают работать внутри митохондрий. В основном эти гены кодируют белки дыхательной цепи — это молекулы, которые работают на последнем этапе клеточного дыхания и отвечают за производство подавляющего большинства молекул АТФ в клетке. Именно поэтому мутации в митохондриальной ДНК зачастую неприятно сказываются на здоровье их носителя: от дефицита энергии страдают в первую очередь нервы и мышцы, что приводит к развитию миопатий и нейропатий.

Один из пациентов, судя по всему, унаследовал свою болезнь от матери. Ее мать, в свою очередь, была здорова, однако симптомы, похожие на митохондриальную болезнь, обнаружились у ее отца. Чтобы выяснить, как такое могло получиться, исследователи выделили ДНК из клеток всех членов семьи. Затем они избирательно амплифицировали участки, похожие на митохондриальную ДНК, и отсеквенировали их. Оказалось, что и у пациента, и у его матери в клетках находится более одного типа митохондриальной ДНК. Похожую ситуацию авторы работы обнаружили еще в двух семьях.

Проведенные исследования позволили ученым только констатировать факт неклассического наследования митохондриальной ДНК, но не выявить его механизм. Правда, обсуждая свои результаты, авторы статьи предположили, что дело в какой-то мутации, которая позволяет отцовским митохондриям выживать внутри оплодотворенной яйцеклетки. Чаще всего они гибнут, но можно себе представить, что какой-то неизвестный пока механизм позволяет им составить конкуренцию материнским митохондриям и размножиться, передав ребенку таким образом отцовскую последовательность митохондриальной ДНК вместе с характерными мутациями.

Эта работа спровоцировала широкое обсуждение в научных кругах, поскольку до сих пор примеры наследования митохондрий от отца у людей не встречались, за исключением одной относительно давней работы с неоднозначными результатами (M. Schwartz, J. Vissing, 2002. Paternal Inheritance of Mitochondrial DNA). Правда, после выхода этой статьи несколько исследовательских групп попробовали найти другие примеры такого наследования, но их поиски ни к чему не привели (см., например, статьи A. Pyle et al., 2015. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans и R. W. Taylor et al., 2003. Genotypes from patients indicate no paternal mitochondrial DNA contribution). Да и у других млекопитающих передача митохондрий от отца к детенышу описана только в редких статьях (см., например, X. Zhao et al., 2004. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries) или U. Gyllensten et al., 1991. Paternal inheritance of mitochondrial DNA in mice).

Поэтому и новые данные о том, что митохондриальная ДНК может наследоваться от отца, подверглись ожидаемой критике. В отзывах на статью Ло и ее соавторов упрекнули в том, что они не рассмотрели другой вариант интерпретации данных. Возможно, дело не в том, что в клетках пациентов находится несколько вариантов митохондрий (это явление, кстати, называют гетероплазмией). Быть может, дело в том, что ДНК из митохондрий отца встроилась в геном его же половых клеток? Или в геном половых клеток деда (тогда все клетки отца будут нести эти мутацию)? В таком случае ребенок может унаследовать митохондриальную ДНК отца вместе с мутациями, но не получить его митохондрий.

Случаи таких дополнительных переносов митохондриальной ДНК в ядро давно известны (cм. G. Dayama et al., 2014. The genomic landscape of polymorphic human nuclear mitochondrial insertions), эти вставки получили название NUMT (nuclear-mitochondrial DNA segments). Мы уже знаем, что они появляются в каждом поколении с частотой примерно 5 половых клеток на миллион. Например, в одном из референсных геномов человека (усредненных геномов, которые «собирают» из нескольких людей и используют в качестве стандарта) таких вставок нашлось 755 штук. Они бывают разного размера: от нескольких десятков пар оснований до почти полной последовательности митохондриальной ДНК. А встроиться в геном им помогают, судя по всему, двунитевые разрывы: когда в ядерной ДНК возникает такая «сквозная дыра» и рядом оказывается фрагмент митохондриальной ДНК, то белки репарации соединяют концы «дыры» с чужеродной нитью.

Рис. 2. Гипотетические пути образования NUMT

Рис. 2. Гипотетические пути образования NUMT. А — деградация поврежденной митохондрии, В — лизис митохондрии, С — «захват» митохондрии ядром, D — слияние оболочек митохондрии и ядра, E — интеграция митохондриальной ДНК в поврежденные участки хромосом. Изображение из статьи E. Hazkani-Covo et al., 2010. Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes

Чтобы убедиться в том, что в клетках пациентов действительно уживаются несколько видов митохондрий, по мнению критиков, потребовались бы дополнительные эксперименты. Один путь проверки — это создать культуру клеток такого «подозрительного» пациента без митохондрий (такие методы давно существуют, см. A. Kukat et AL., 2008. Generation of ρ 0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses). Тогда можно было бы снова отсеквенировать ДНК и проверить, продолжают ли в ней обнаруживаться митохондриальные последовательности.

Второй путь — тщательное секвенирование ядерной ДНК. Этим путем пошли авторы нового исследования, опубликованного недавно в журнале Nature Communications. Они попробовали воспроизвести результаты работы Ло и соавторов и поискать другие примеры наследования митохондриальных мутаций от отца. Для этого они обратились к базе данных 100 000 Genomes Project — проекту, в рамках которого в Великобритании секвенируют геномы людей с редкими болезнями. Из него ученые выбрали 10 764 тройки «мать, отец, ребенок», где отцы несли по меньшей мере одну последовательность митохондриальной ДНК, которая не встречалась у матерей. Затем исследователи выделили 103 последовательности, которые встречались у отцов и их детей одновременно — таких пар оказалось 32. Из них только в 7 случаях наследование оказалось полным: то есть ребенку достались все последовательности отцовской митохондриальной ДНК. Это уже говорит о том, что такой тип наследования встречается нечасто — даже в выборке из людей с редкими заболеваниями (у которых с большей вероятностью можно найти генетические аномалии) таких семей оказалось около 0,06%.

Чтобы проверить, принадлежат ли эти последовательности к собственно ДНК митохондрий или же они встроены в ядерный геном, ученые искали в расшифровке ядерного генома следы стыков — непрерывные участки, которые содержат одновременно последовательности, характерные и для ядерной, и для митохондриальной ДНК. Во всех 7 семьях отец и ребенок (а двух семьях — даже два ребенка) оказались носителями именно вставок митохондриальной ДНК в ядерную, то есть NUMT. Все эти вставки были длиной не меньше 500 пар оснований и не встречались ни у других членов этих семей, ни в предыдущих работах, посвященных NUMT.

Рис. 3. Cемьи, в которых отцы и дети несли общие фрагменты митохондриальной ДНК

Рис. 3. Вверху — 32 семьи, в которых отцы и дети несли общие фрагменты митохондриальной ДНК. По вертикали отложено число вариантов; желтый — варианты, которые встретились у отцов, матерей и детей, синий — только у отцов, красный — только у отцов и детей. Внизу — родословная исследуемых семей. Квадрат — мужской пол, круг — женский пол, заштрихованные фигуры — люди с уникальными митохондриальными последовательностями, снизу указан процент встречаемости. Изображение из обсуждаемой статьи в Nature Communications

Тем не менее, у двух семей встретилась одна и та же вставка, несмотря на то, что они не были близкими родственниками, а еще у двух оказалась общей другая вставка. Можно было бы предположить, что нескольким отцам независимо досталась от далеких предков одна и та же мутация, а затем она перешла по наследству их детям, или что один и тот же фрагмент митохондриальной ДНК дважды независимо попал в одну и ту же хромосому в ядре, и его получили дети. Авторы обсуждаемой работы сочли второй вариант более вероятным: возможно, потому, что шанс передать ребенку отцовскую митохондрию (которая, как правило, обречена погибнуть внутри яйцеклетки) гораздо ниже, чем шанс передать отцовскую хромосому со вставкой (здесь вероятность около 50%).

Затем исследователи еще раз прошлись по базе геномов, чтобы выявить всех отцов, несущих NUMT в своих хромосомах. Их оказалось всего 14. Из них только семь (о которых говорилось выше), то есть половина, передали вставки митохондриальной ДНК своим детям, что соответствует средней вероятности наследования любой неполовой хромосомы.

Как уже упоминалось выше, у семей с наследованием NUMT встречается более одной такой вставки на человека. Авторы работы заметили, что шесть из семи семей несут «разорванные» участки митохондриальной ДНК, которые «смотрят» в противоположные стороны на хромосоме. Такое возможно только в том случае, когда кольцевая молекула ДНК рвется в одном месте и встраивается в геном — при этом концевые участки получаются разнонаправленными. В подтверждение этой гипотезы исследователи нашли у всех семи семей следы стыков митохондриальных последовательностей. Это позволило им заключить, что NUMT — это сложная структура, которая нередко образуется путем слияния множества кольцевых фрагментов митохондриальной ДНК и встраивания их в ядерный геном. Таких фрагментов у разных семей нашлось от 2 до 20, и их число строго совпадало у родителей и детей.

Рис. 4. Модель образования больших NUMT

Рис. 4. Модель образования больших NUMT: отдельные кольцевые фрагменты митохондриальной ДНК соединяются концами и встраиваются в разрыв ядерной ДНК. В результате между фрагментами образуются стыки, а участки на их концах «смотрят» в разные стороны. Изображение из обсуждаемой статьи в Nature Communications

Следует ли из этого, что наследование митохондриальной ДНК отца через ядерный геном строго подтверждено, гетероплазмии у людей не бывает, а Ло с коллегами оказались неправы? Строго говоря, мы не можем этого утверждать, потому что новая работа сделана на новых данных и на других людях. Кроме того, у группы Ло нашлись свои возражения против гипотезы NUMTов (S. Luo et al., 2019. Reply to Lutz-Bonengel et al.: Biparental mtDNA transmission is unlikely to be the result of nuclear mitochondrial DNA segments). Например, они подметили, что количество NUMTов в геноме невелико (в пределах нескольких копий), в то время как «настоящих» митохондрий со своей кольцевой ДНК в клетке сотни, если не тысячи. Крайне маловероятно, по их словам, чтобы они, секвенируя митохондриальную ДНК, обнаружили ту самую «бракованную» копию в ядре на фоне множества полноценных митохондриальных геномов. В то же время, если бы митохондрии от отца наследовались целиком, то, поскольку митохондрии размножаются в клетке, их могло бы оказаться значительно больше — следовательно, обнаружилось бы больше копий мутантной ДНК.

Кто из исследователей прав и что именно наследуется в обнаруженных ими семьях — целые митохондрии от отца или отдельные вставки в геном — пока неясно. На данный момент одна группа предложила свою версию развития событий, а вторая подвергла ее сомнению. И как бы ни складывались события на самом деле, факт остается фактом: в отдельных случаях ребенок действительно может получить митохондриальную ДНК в наследство от отца — мы просто еще не знаем, в какой форме. Тем не менее, форма наследования в данном случае имеет большое значение, потому что может привести к разным последствиям.

Если предположить, что по наследству передаются митохондрии целиком, то ребенок может действительно столкнуться с митохондриальными болезнями (если в геноме этих органелл находятся неблагоприятные мутации). Кроме того, редкие описанные случаи гетероплазмии у животных тоже не проходят бесследно. Например, у экспериментально выведенных мышей со смесью митохондрий возникает множество проблем со здоровьем: сниженное потребление пищи и кислорода, замедленная активность и когнитивные нарушения (см. M. S. Sharpley et al., 2014. Heteroplasmy of mouse mtDNA Is genetically unstable and results in altered behavior and cognition). Вероятно, дело в том, что разные типы митохондрий кодируют разные варианты митохондриальных белков. И когда в течение жизни клетки митохондрии сливаются друг с другом и разделяются обратно, наборы генов перемешиваются и в органелле начинают работать белки из разных «команд». Вследствие этого падает эффективность клеточного дыхания и начинает не хватать энергии. Можно предположить, что, если бы у человека такое наследование было возможно, то, помимо мутаций в митохондриальной ДНК и связанных с ними болезней, он мог бы приобрести и другие патологии.

Если же митохондриальная ДНК наследуется через NUMT, то последствия могут быть совсем другими. Поскольку NUMT — это случайная вставка в геном, то она, как и любая мутация, может нарушить структуру гена или изменить его работу. Именно это, кстати, время от времени происходит в опухолях — среди прочих хромосомных аномалий там встречаются и такие вставки (Y. S. Ju et al., 2015. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells). Известны и случаи заболеваний, вызванных NUMT в обычных клетках, — они ведут себя так же, как и другие аутосомные мутации (Y.-G. Yao et al., 2008. Pseudomitochondrial genome haunts disease studies). Тем не менее, сами митохондриальные гены в составе NUMT, кажется, не экспрессируются на достаточном уровне, чтобы влиять на работу клетки. По крайней мере, ни в одной из семей, у которых обнаружили передачу NUMT, не нашли митохондриальных болезней.

Таким образом, до сих пор до конца не ясно, с чем мы имеем дело: с продолжением миграции митохондриальных генов в ядро или с эгоистичными отцовскими митохондриями, которые выбили себе право на жизнь в яйцеклетке. Но от того, какой из механизмов наследования подтвердится, будет многое зависеть для клинической практики: например, насколько высоки шансы унаследовать митохондриальную ДНК в каждой конкретной семье и чем может грозить ребенку такое наследство.

Источник: W. Wei, A. T. Pagnamenta, N. Gleadall, A. Sanchis-Juan, J. Stephens, J. Broxholme, S. Tuna, C. A. Odhams, Genomics England Research Consortium, NIHR BioResource, C. Fratter, E. Turro, M. J. Caulfield, J. C. Taylor, S. Rahman & P. F. Chinnery. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans // Nature Communications. 2020. DOI: 10.1038/s41467-020-15336-3.

Читайте также: