Неконкурентное необратимое ингибирование. Аллостерические ферменты.

Обновлено: 19.04.2024

Неконкурентным называют ингибирование ферментативной реакции, при котором ингибитор взаимодействует с ферментом в участке, отличном от активного центра. Неконкурентные ингибиторы не являются структурными аналогами субстрата.

Неконкурентный ингибитор может связываться либо с ферментом, либо с фермент-субстратным комплексом, образуя неактивный комплекс. Присоединение неконкурентного ингибитора вызывает изменение конформации молекулы фермента таким образом, что нарушается взаимодействие субстрата с активным центром фермента, что приводит к снижению скорости ферментативной реакции.

Кинетические зависимости

Этот тип ингибирования характеризуется снижением Vmax ферментативной реакции и уменьшением сродства субстрата к ферменту, т.е. увеличением Кm.

Необратимое ингибирование наблюдают в случае образования ковалентных стабильных связей между молекулой ингибитора и фермента. Чаще всего модификации подвергается активный центр фермента, В результате фермент не может выполнять каталитическую функцию.

К необратимым ингибиторам относят ионы тяжёлых металлов, например ртути (Hg 2+ ), серебра (Ag + ) и мышьяка (As 3+ ), которые в малых концентрациях блокируют сульфгидрильные группы активного центра. Субстрат при этом не может подвергаться химическому превращению. При наличии реактиваторов ферментативная функция восстанавливается. В больших концентрациях ионы тяжёлых металлов вызывают денатурацию белковой молекулы фермента, т.е. приводят к полной инактивации фермента.

Аллостерическая регуляция активности ферментов. Роль аллостерических ферментов в метаболизме клетки. Аллостерические эффекторы и ингибиторы. Особенности строения и функционирования аллостерических ферментов и их локализация в метаболических путях. Регуляция активности ферментов по принципу отрицательной обратной связи.

Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами. Участвующие в аллостерической регуляции эффекторы - клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.

Роль аллостерических ферментов в метаболизме клетки.Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состояния клетки. Аллостерическая регуляция имеет большое значение в следующих ситуациях:

-при анаболических процессах. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяют осуществлять регуляцию синтеза этих соединений;

-при катаболических процессах. В случае накопления АТФ в клетке происходит ингибирование метаболических путей, обеспечивающих синтез энергии. Субстраты при этом расходуются на реакции запасания резервных питательных веществ;

-для координации анаболических и катаболических путей. АТФ и АДФ - аллостерические эффекторы, действующие как антагонисты;

-для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот). Таким образом, конечные продукты одного метаболического пути могут быть аллостерическими эффекторами другого метаболического пути.

Аллостерические эффекторы.Эффектор, вызывающий снижение (ингибирование) активности фермента, называют отрицательным эффектором, или ингибитором. Эффектор, вызьгоаюший повышение (активацию) активности ферментов, называют положительным эффектором, или активатором.

Аллостерическими эффекторами часто служат различные метаболиты. Конечные продукты метаболического пути - часто ингибиторы аллостерических ферментов, а исходные вещества - активаторы. Это так называемая гетеротропная регуляция. Такой вид аллостерической регуляции очень распространён в биологических системах.

Более редкий случай аллостерической регуляции, когда сам субстрат может выступать в качестве положительного эффектора. Такая регуляция называется гомотропной (эффектор и субстрат - одно и то же вещество). Эти ферменты имеют несколько центров связывания для субстрата, которые могут выполнять двойную функцию: каталитическую и регуляторную. Аллостерические ферменты такого типа используются в ситуации, когда субстрат накапливается в избытке и должен быстро преобразоваться в продукт.

Выявить ферменты с аллостерической регуляцией можно, изучая кинетику этих ферментов. Эти ферменты не подчиняются законам Михаэлиса-Ментен, они имеют характерную S-образную кривую зависимости скорости реакции от концентрации субстрата.

Особенности строения и функционирования аллостерических ферментов:

-обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;

-они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;

-эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;

-аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.

-протомер, на котором находится аллостерический центр, - регуляторный протомер, в отличие от каталитического протомера, содержащего активный центр, в котором проходит химическая реакция;

-аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром вызывает последовательное кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента;

-регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;

-аллостерические ферменты катализируют ключевые реакции данного метаболического пути.


Локализация аллостерических ферментов в метаболическом пути.Скорость метаболических процессов зависит от концентрации веществ, использующихся и образующихся в данной цепи реакций. Такая регуляция представляется логичной, так как при накоплении конечного продукта он (конечный продукт) может действовать как аллостерический ингибитор фермента, катализирующего чаще всего начальный этап данного метаболического пути:


Фермент, катализирующий превращение субстрата А в продукт В, имеет аллостерический центр для отрицательного эффектора, которым служит конечный продукт метаболического пути F. Если концентрация F увеличивается (т.е. вещество F синтезируется быстрее, чем расходуется), ингибируется активность одного из начальных ферментов. Такую регуляцию называют отрицательной обратной связью, или ретроингибировани-ем. Отрицательная обратная связь - часто встречающийся механизм регуляции метаболизма в клетке.

В центральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути. Как правило, при этом аллостерической активации подвергаются ферменты, катализирующие ключевые реакции заключительных этапов метаболического пути:



Каталитическая активность некоторых регуляторных ферментов может модулироваться низкомолекулярными аллостерическими эффекторами, обычно имеющими либо незначительное структурное сходство с субстратами или с коферментами регулируемого ими фермента, либо не имеющими его вообще. Ингибирование фермента, катализирующего одну из реакций в цепи, конечным продуктом этой цепи называют ингибированием по принципу обратной связи. В цепи реакций биосинтеза D из А, катализируемой ферментами

при высоких концентрациях D обычно наблюдается ингибирование превращения А в В. Это не простое «обращение» реакции, связанное с накоплением промежуточных продуктов, а следствие того, что продукт D способен связываться с ферментом выступая в качестве его ингибитора. Таким образом, D действует как отрицательный аллостерический эффектор фермента, или ингибитор, действующий по принципу обратной связи. Следовательно, ингибирование под действием D регулирует синтез D. Обычно D связывается с ингибируемым ферментом в аллостерическом центре, удаленном от каталитического центра.

В кинетическом плане ингибирование по принципу обратной связи может быть конкурентным, неконкурентным, частично конкурентным и смешанным. Ингибирование по принципу обратной связи характерно для биосинтетических путей. Очень часто ингибитор, действующий по принципу обратной связи, является последней малой молекулой перед синтезом макромолекулы (например, аминокислотой, если речь идет о синтезе белков, или нуклеотидом в синтезе нуклеиновых кислот). Регуляция по принципу обратной связи обычно происходит на первой функционально необратимой стадии, уникальной для данной цепи реакций биосинтеза.

Примерами ингибирования по принципу обратной связи в микроорганизмах могут служить ингибирование фосфорибозил: АТР—пирофосфорилазы гистидином, антранилатсинтазы—триптофаном, аспартаттранскарбамоилазы — под действием СТР. В каждом случае регуляторный фермент участвует в цепи реакций биосинтеза единственного конечного продукта - His, Тrр или СТР.

Цепь реакций биосинтеза часто бывает разветвленной— ее первые реакции дают начало синтезу сразу двух или большего числа метаболитов. На рис. 10.4 указаны вероятные участки в разветвленной цепи биосинтеза, по которым осуществляется простое ингибирование по принципу обратной связи (ингибиторами могут служить аминокислоты, пурины или пиримидины). являются предшественниками всех четырех конечных продуктов - предшественником предшественником только D. Последовательности являются линейными и могут подвергаться ингибированию конечными продуктами по принципу обратной связи.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Неконкурентное необратимое ингибирование. Аллостерические ферменты.

101

Многие соединения могут влиять на обмен веществ, модулируя активность соответствующих ферментов. Особенно важные функции при этом выполняют ингибиторы ферментов . Ингибиторами ферментов являются многие лекарственные вещества природного или синтетического происхождения (см. сс. 188, 250, 376 и 388). Метаболиты также могут быть ингибиторами ферментов в процессах регуляции (см. с. 116).

А. Типы ингибирования

Большинство ингибиторов ферментов действуют обратимо , т. е. не вносят в молекулу фермента каких-либо изменений после своей диссоциации. Однако существуют также необратимые ингибиторы ферментов, которые необратимо модифицируют целевой фермент. Принцип действия ингибитора, тип его ингибирования определяют путем сравнения кинетики реакции (см. с. 98) в присутствии ингибиторам без него (см. схему Б ). Различают конкурентное ( А , слева) и неконкурентное ( А , справа) ингибирование . В регуляции обмена веществ важную роль играет аллостерическое ингибирование ( А , 6).

Так называемые аналоги субстрата ( 2 ) имеют свойства, подобные свойствам субстрата целевого фермента. Они обратимо блокируют часть молекул имеющегося в наличии фермента, но не могут далее превращаться в продукт. Поэтому для достижения половины максимальной скорости реакции необходимы более высокие концентрации субстрата: в присутствии такого ингибитора константа Михаэлиса K m растет ( Б ). Субстрат в высоких концентрациях вытесняет ингибитор с фермента. Поэтому максимальная скорость V (см. с. 98) при этом типе торможения не претерпевает изменений. Так как субстрат и ингибитор конкурируют за место связывания на ферменте, данный тип торможения называют конкурентным. Аналоги переходного состояния ( 3 ) также действуют как конкурентные ингибиторы.

Если ингибитор реагирует с функционально важной группой фермента, не препятствуя связыванию субстрата, такое ингибирование называется неконкурентным (на схеме справа). В этом случае K m остается неизменной, напротив уменьшается концентрация функционально активного фермента [Е] t и, следовательно, максимальная скорость реакции V. Неконкурентные ингибиторы действуют как правило необратимо , поскольку они модифицируют функциональные группы целевого фермента ( 4 ).

В случае так называемых " суицидных субстратов " ( 5 ) речь идет о субстратных аналогах, содержащих дополнительно реакционную группу. Вначале они связываются обратимо, а затем образуют ковалентное соединение с активным центром фермента. Поэтому ингибирование такими соединениями проявляется как неконкурентное. Известным примером такого ингибитора является антибиотик пенициллин (см. с. 250).

Аллостерические ингибиторы связываются с отдельными участками фермента вне активного центра ( 6 ). Такое связывание влечет за собой конформационные изменения в молекуле фермента, которые приводят к уменьшению его активности (см. с. 118). Аллостерические эффекты встречаются практически только в случае олигомерных ферментов. Кинетику таких систем нельзя описать с помощью простой модели Михаэлиса-Ментен.

Б. Кинетика ингибирования

Конкурентное ингибирование легко можно отличить от неконкурентного при использовании графика Иди-Хофсти (см. с. 98). Как уже упоминалось, конкурентные ингибиторы влияют только на K m , но не на V. Полученные в отсутствие и в присутствии ингибитора прямые на графике пересекаются на оси ординат. Прямые для неконкурентного ингибирования имеют одинаковый наклон (К m не изменяется), однако по мере увеличения концентрации ингибитора отрезки, отсекаемые этими прямыми на оси ординат, становятся все короче. Для аллостерических ферментов нельзя применять график Иди-Хофсти, имеющий в этом случае нелинейный характер (здесь не приведен).

2. Неконкурентное ингибирование

Неконкурентным называют ингибирование ферментативной реакции, при котором ингибитор взаимодействует с ферментом в участке, отличном от активного центра. Неконкурентные ингибиторы не являются структурными аналогами субстрата.

Неконкурентный ингибитор может связываться либо с ферментом, либо с фермент-субстратным комплексом, образуя неактивный комплекс. Присоединение неконкурентного ингибитора вызывает изменение конформации молекулы фермента таким образом, что нарушается взаимодействие субстрата с активным центром фермента, что приводит к снижению скорости ферментативной реакции.

Кинетические зависимости

Этот тип ингибирования характеризуется снижением Vmax ферментативной реакции и уменьшением сродства субстрата к ферменту, т.е. увеличением Кm.

Необратимое ингибирование наблюдают в случае образования ковалентных стабильных связей между молекулой ингибитора и фермента. Чаще всего модификации подвергается активный центр фермента, В результате фермент не может выполнять каталитическую функцию.

К необратимым ингибиторам относят ионы тяжёлых металлов, например ртути (Hg 2+ ), серебра (Ag + ) и мышьяка (As 3+ ), которые в малых концентрациях блокируют сульфгидрильные группы активного центра. Субстрат при этом не может подвергаться химическому превращению. При наличии реактиваторов ферментативная функция восстанавливается. В больших концентрациях ионы тяжёлых металлов вызывают денатурацию белковой молекулы фермента, т.е. приводят к полной инактивации фермента.

18. Аллостерическая регуляция активности ферментов. Роль аллостерических ферментов в метаболизме клетки. Аллостерические эффекторы и ингибиторы. Особенности строения и функционирования аллостерических ферментов и их локализация в метаболических путях. Регуляция активности ферментов по принципу отрицательной обратной связи.

Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами. Участвующие в аллостерической регуляции эффекторы - клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.

Роль аллостерических ферментов в метаболизме клетки. Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состояния клетки. Аллостерическая регуляция имеет большое значение в следующих ситуациях:

-при анаболических процессах. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяют осуществлять регуляцию синтеза этих соединений;

-при катаболических процессах. В случае накопления АТФ в клетке происходит ингибирование метаболических путей, обеспечивающих синтез энергии. Субстраты при этом расходуются на реакции запасания резервных питательных веществ;

-для координации анаболических и катаболических путей. АТФ и АДФ - аллостерические эффекторы, действующие как антагонисты;

-для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот). Таким образом, конечные продукты одного метаболического пути могут быть аллостерическими эффекторами другого метаболического пути.

Аллостерические эффекторы. Эффектор, вызывающий снижение (ингибирование) активности фермента, называют отрицательным эффектором, или ингибитором. Эффектор, вызьгоаюший повышение (активацию) активности ферментов, называют положительным эффектором, или активатором.

Аллостерическими эффекторами часто служат различные метаболиты. Конечные продукты метаболического пути - часто ингибиторы аллостерических ферментов, а исходные вещества - активаторы. Это так называемая гетеротропная регуляция. Такой вид аллостерической регуляции очень распространён в биологических системах.

Более редкий случай аллостерической регуляции, когда сам субстрат может выступать в качестве положительного эффектора. Такая регуляция называется гомотропной (эффектор и субстрат - одно и то же вещество). Эти ферменты имеют несколько центров связывания для субстрата, которые могут выполнять двойную функцию: каталитическую и регуляторную. Аллостерические ферменты такого типа используются в ситуации, когда субстрат накапливается в избытке и должен быстро преобразоваться в продукт.

Выявить ферменты с аллостерической регуляцией можно, изучая кинетику этих ферментов. Эти ферменты не подчиняются законам Михаэлиса-Ментен, они имеют характерную S-образную кривую зависимости скорости реакции от концентрации субстрата.

Особенности строения и функционирования аллостерических ферментов:

-обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;

-они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;

-эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;

-аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.

-протомер, на котором находится аллостерический центр, - регуляторный протомер, в отличие от каталитического протомера, содержащего активный центр, в котором проходит химическая реакция;

-аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром вызывает последовательное кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента;

-регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;

-аллостерические ферменты катализируют ключевые реакции данного метаболического пути.


Локализация аллостерических ферментов в метаболическом пути. Скорость метаболических процессов зависит от концентрации веществ, использующихся и образующихся в данной цепи реакций. Такая регуляция представляется логичной, так как при накоплении конечного продукта он (конечный продукт) может действовать как аллостерический ингибитор фермента, катализирующего чаще всего начальный этап данного метаболического пути:

Фермент, катализирующий превращение субстрата А в продукт В, имеет аллостерический центр для отрицательного эффектора, которым служит конечный продукт метаболического пути F. Если концентрация F увеличивается (т.е. вещество F синтезируется быстрее, чем расходуется), ингибируется активность одного из начальных ферментов. Такую регуляцию называют отрицательной обратной связью, или ретроингибировани-ем. Отрицательная обратная связь - часто встречающийся механизм регуляции метаболизма в клетке.

В центральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути. Как правило, при этом аллостерической активации подвергаются ферменты, катализирующие ключевые реакции заключительных этапов метаболического пути:

Каталитическая активность некоторых регуляторных ферментов может модулироваться низкомолекулярными аллостерическими эффекторами, обычно имеющими либо незначительное структурное сходство с субстратами или с коферментами регулируемого ими фермента, либо не имеющими его вообще. Ингибирование фермента, катализирующего одну из реакций в цепи, конечным продуктом этой цепи называют ингибированием по принципу обратной связи. В цепи реакций биосинтеза D из А, катализируемой ферментами

при высоких концентрациях D обычно наблюдается ингибирование превращения А в В. Это не простое «обращение» реакции, связанное с накоплением промежуточных продуктов, а следствие того, что продукт D способен связываться с ферментом выступая в качестве его ингибитора. Таким образом, D действует как отрицательный аллостерический эффектор фермента, или ингибитор, действующий по принципу обратной связи. Следовательно, ингибирование под действием D регулирует синтез D. Обычно D связывается с ингибируемым ферментом в аллостерическом центре, удаленном от каталитического центра.

В кинетическом плане ингибирование по принципу обратной связи может быть конкурентным, неконкурентным, частично конкурентным и смешанным. Ингибирование по принципу обратной связи характерно для биосинтетических путей. Очень часто ингибитор, действующий по принципу обратной связи, является последней малой молекулой перед синтезом макромолекулы (например, аминокислотой, если речь идет о синтезе белков, или нуклеотидом в синтезе нуклеиновых кислот). Регуляция по принципу обратной связи обычно происходит на первой функционально необратимой стадии, уникальной для данной цепи реакций биосинтеза.

Примерами ингибирования по принципу обратной связи в микроорганизмах могут служить ингибирование фосфорибозил: АТР—пирофосфорилазы гистидином, антранилатсинтазы—триптофаном, аспартаттранскарбамоилазы — под действием СТР. В каждом случае регуляторный фермент участвует в цепи реакций биосинтеза единственного конечного продукта - His, Тrр или СТР.

Цепь реакций биосинтеза часто бывает разветвленной— ее первые реакции дают начало синтезу сразу двух или большего числа метаболитов. На рис. 10.4 указаны вероятные участки в разветвленной цепи биосинтеза, по которым осуществляется простое ингибирование по принципу обратной связи (ингибиторами могут служить аминокислоты, пурины или пиримидины). являются предшественниками всех четырех конечных продуктов - предшественником предшественником только D. Последовательности являются линейными и могут подвергаться ингибированию конечными продуктами по принципу обратной связи.

Неконкурентное необратимое ингибирование. Аллостерические ферменты.

Неконкурентное необратимое ингибирование. Аллостерические ферменты.

Некоторые вещества вызывают необратимое ингибирование ферментов. Рассмотрим два примера такого рода.

Очень малые концентрации ионов тяжелых металлов, например ионов ртути (Hg2+), серебра (Ag+) и мышьяка (As+), а также определенные иодсодержащие соединения полностью ингибируют некоторые ферменты. Эти вещества необратимо соединяются с сульфгидрильными группами (—SH) в молекуле фермента (рис. 4.13), причем сульфгидрильные группы могут находиться как в активном центре фермента, так и вне его. В любом случае структура фермента нарушается и он теряет способность осуществлять катализ. Может произойти и осаждение ферментного белка.

Другой пример необратимого ингибирования — действие диизопропилфторфосфата (ДФФ), соединения из группы нервно-паралитических отравляющих веществ. ДФФ связывается с остатком аминокислоты серина, находящимся в активном центре фермента ацетилхолинэстеразы. Этот фермент инактивирует ацетилхолин, играющий роль нейромедиатора. Одна из функций ацетилхолина заключается в обеспечении передачи нервного импульса от одного нейрона к другому через синаптическую щель.

Почти сразу после передачи очередного импульса ацетилхолинэстераза инактивирует ацетилхолин, расщепляя его молекулы. Если адетилхолинэстераза ингибирована, то ацетилхолин накапливается, нервные импульсы следуют один за другим, и мышца длительное время не расслабляется. В конце концов наступает паралич, а может наступить и смерть, поскольку затронутыми оказываются также мышцы грудной клетки, в результате чего происходит остановка дыхания. Некоторые из применяемых в настоящее время инсектицидов (например, паратион) оказывают такое же действие на насекомых. Нервную и мышечную системы человека они тоже способны повреждать.

Неконкурентное необратимое ингибирование. Аллостерические ферменты.

Аллостерические ферменты

Один из самых обычных способов регуляции метаболических путей — это регуляция с помощью аллостерических ферментов. Аллостерическими называют ферменты, действие которых «по определению» связано с изменением формы (alios — иной, другой; stereos — форма).

Активность таких ферментов регулируют вещества, действующие подобно неконкурентным ингибиторам. Эти вещества присоединяются к ферментам в особых участках, удаленных от активного центра, и меняют активность фермента, вызывая обратимое изменение в структуре активного центра.

В результате меняется и способность субстрата связываться с ферментом (чем данное явление и отличается от неконкурентного ингибирования). Действующие таким образом вещества называются аллостерическими ингибиторами. Рисунок поясняет механизм аллостерического ингибирования.

Примером данного явления служит реакция, протекающая во время гликолиза, который составляет одну из стадий процесса клеточного дыхания. Клеточное дыхание служит источником АТФ. Если концентрация АТФ высока, то АТФ, действуя как аллостерический ингибитор, подавляет активность одного из ферментов гликолиза. Если же клеточный метаболизм усиливается, а следовательно, АТФ расходуется и его общая концентрация падает, то после того как ингибитор будет удален, данный метаболический путь снова вступает в действие. Это может также служить примером ингибирования конечным продуктом.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Лекарства обычно ингибируют ферменты

В медицине активно разрабатываются и используются соединения, изменяющие активность ферментов с целью регуляции скорости метаболических реакций и уменьшения синтеза определенных веществ в организме.

Подавление активности ферментов обычно называют ингибированием, однако это не всегда корректно. Ингибитором называется вещество, вызывающее специфичное снижение активности фермента. Таким образом, неорганические кислоты и тяжелые металлы ингибиторами не являются, а являются инактиваторами, так как снижают активность многих ферментов, т.е. действуют неспецифично.

В научной деятельности для более точного описания процессов ингибирования пользуются кинетикой Михаэлиса-Ментен и ее терминами - максимальная скорость (Vmax) и константа Михаэлиса (Km).

Ингибирование ферментов

Можно выделить два основных направления ингибирования

  • по прочности связывания фермента с ингибитором ингибирование бывает обратимым и необратимым .
  • по отношению ингибитора к активному центру фермента ингибирование делят на конкурентное и неконкурентное .

Необратимое ингибирование

При необратимом ингибировании происходит связывание или разрушение функциональных групп фермента, необходимых для проявления его активности.

Например, вещество диизопропилфторфосфат прочно и необратимо связывается с гидроксигруппой серина в активном центре фермента ацетилхолинэстеразы, гидролизующей ацетилхолин в нервных синапсах. Ингибирование этого фермента предотвращает распад ацетилхолина в синаптической щели, в результате чего медиатор продолжает оказывать воздействие на свои рецепторы, что бесконтрольно усиливает холинергическую регуляцию.

Аналогично диизопропилфторфосфат ингибирует химотрипсин и другие протеазы, имеющие в активном центре серин (сериновые протеазы).

Диизопропилфторфосфат относится к нервно-паралитическим ядам, аналогичным образом действуют боевые фосфоорганические вещества (зарин, зоман). Сюда же относится вещество "малатион", включенный в инсектициды (карбофос, дихлофос) и превращающийся в организме насекомых в ингибитор ацетилхолинэстеразы, а в организме животных и человека разрушающийся до безвредных продуктов.


Механизм необратимого ингибирования ацетилхолинэстеразы

Еще один пример связан с ингибированием ацетилсалициловой кислотой (аспирином) ключевого фермента синтеза простагландинов – циклооксигеназы. Эта кислота входит в состав противовоспалительных средств и используется при воспалительных заболеваниях и лихорадочных состояниях. Присоединение ацетильной группы к гидроксильной группе серина в активном центре фермента вызывает инактивацию последнего и прекращение синтеза простагландинов.


Механизм необратимого ингибирования циклооксигеназы

Третьим показательным примером необратимого ингибирования является влияние антибиотика пенициллина на фермент транспептидазу, сшивающую цепи пептидогликана как последний шаг в синтезе клеточной стенки бактерий.

Обратимое ингибирование

При обратимом ингибировании происходит непрочное связывание ингибитора с функциональными группами фермента, вследствие чего активность фермента постепенно восстанавливается.

Примером обратимого ингибитора может служить прозерин, связывающийся с ферментом ацетилхолинэстеразой в ее активном центре. Группа ингибиторов холинэстеразы (прозерин, дистигмин, галантамин) используется при миастении, после энцефалита, менингита, травм ЦНС.

Конкурентное ингибирование

При таком виде ингибирования ингибитор по своей структуре похож на субстрат фермента. Поэтому он соперничает с субстратом за активный центр (за контактный участок), что приводит к уменьшению связывания субстрата с ферментом и нарушению катализа. В этом состоит особенность конкурентного ингибирования – возможность усилить или ослабить ингибирование через изменение концентрации субстрата. При данном ингибировании максимальная скорость реакции остается вполне достижимой при создании высоких концентраций субстрата.

1. Ингибирование фермента цикла трикарбоновых кислот сукцинат-дегидрогеназы малоновой кислотой, структура которой схожа со структурой субстрата этого фермента – янтарной кислоты (сукцината).


Конкурентное ингибирование сукцинатдегидрогеназы

2. Также к конкурентным ингибиторам относят антиметаболиты или псевдосубстраты , например, антибактериальные средства сульфаниламиды, схожие по структуре с пара-аминобензойной кислотой, компонентом фолиевой кислоты. При лечении сульфаниламидами в бактериальной клетке возникает конкуренция между сульфаниламидом и пара-аминобензойной кислотой при синтезе дигидрофолиевой кислоты, что и вызывает лечебный эффект.

3. В качестве других примеров лекарственных конкурентных ингибиторов можно привести

  • ингибитор синтеза холестерина ловастатин, обратимо ингибирующий ГМГ-S-КоА-редуктазу,
  • противоопухолевый препарат метотрексат, необратимо подавляющий дигидрофолатредуктазу,
  • непрямой антикоагулянт дикумарол, конкурент витамина К,
  • антигипертензивный препарат метил-ДОФА, подавляющий активность ДОФА-декарбоксилазы,
  • средство для лечения подагры аллопуринол, ингибирующий ксантиноксидазу.

Примером конкуренции, но не ингибирования (!), является взаимодействие этанола и метанола за активный центр алкогольдегидрогеназы. В данном случае ингибирование, как таковое, отсутствует, но с активным центром фермента связывается тот спирт, концентрация которого больше. Данный эффект используют у пациентов с отравлением метанолом для которого этиловый спирт является антидотом.

Данный вид ингибирования связан с присоединением ингибитора не в активном центре, а в другом месте молекулы. Но при этом меняется структура активного центра и связь с субстратом становится невозможной. Это может быть аллостерическое ингибирование, когда активность фермента снижается естественными модуляторами, или связывание с ферментом каких-либо веществ вне активного и аллостерического центра. Например:

  • синильная кислота (цианиды) связывается с гемовым железом ферментов дыхательной цепи и блокирует клеточное дыхание,
  • связывание ионов тяжелых металлов (Cu 2+ , Hg 2+ , Ag + ) с SH-группами белков.

Также примером может служить фруктозо-1,6-дифосфат, который ингибируя аденилосукцинатсинтетазу (синтез пуриновых нуклеотидов), синхронизирует в мышце функционирование пуриннуклеотидного цикла и гликолиза, поставлющего энергию для мышечного сокращения.

Особенностью неконкурентного ингибитора является его способность связываться с ферментом независимо от субстрата, т.е. изменение концентрации субстрата никак не влияет на образование комплекса фермент-ингибитор.

В этом случае ингибитор связывается в активном центре с фермент-субстратным комплексом. Повышение концентрации субстрата, увеличивая количество фермент-субстратного комплекса, усиливает и связывание ингибитора с ним. Таким образом, бесконкурентное ингибирование более сложно, чем другие типы ингибирования.

В качестве примера бесконкурентного ингибирования обычно называют связывание пенициллина и фермента транспептидазы, обеспечивающей сшивку цепей пептидогликана при синтезе клеточной стенки бактерий.

Пенициллин встраивается в активный центр фермента и его лактамное кольцо мимикрирует под переходное состояние фермента - фермент-субстрат. Хотя ситуация похожа на конкурентное ингибирование, из-за одновременного снижения Vmax и Km этот случай относят к бесконкурентному.

На примере пенициллина также рассматривается т.н. суицидное ингибирование . При нем субстрат первоначально связывается с ферментом обратимо, а затем образует устойчивое ковалентное соединение с активным центром, что приводит к ингибированию активности фермента.

Смешанное ингибирование

При таком ингибировании ингибитор способен присоединяться везде – не только в активном центре, но и в других частях молекулы. Но после этого фермент еще способен частично сохранять свою активность. Примером является влияние мертиолата (ртутьорганическое вещество) на сахаразу грибов микромицетов для подавления их роста.

Читайте также: