Структура рнк. Определение биомолекул.

Обновлено: 25.04.2024

РНК в отличие от ДНК бывает по большей части одноцепочечной. Две формы РНК — транспортная (тРНК) и рибосомная (рРНК) — обладают довольно сложной структурой. Существует и третья форма — это информационная, или матричная, РНК (мРНК). Все эти формы участвуют в синтезе белка, и мы рассмотрим их в статье.

Определение биомолекул

В этом разделе мы опишем некоторые простые опыты, с помощью которых можно определять различные вещества, играющие в клетках важную биологическую роль. Существуют и более сложные методы идентификации и разделения клеточных компонентов. Первое место среди них занимают хроматография и электрофорез; их мы рассмотрим в приложении.

Желательно сначала освоить методику анализов, работая с чистыми образцами веществ, подлежащих определению. Овладев методикой и научившись различать соответствующие изменения окраски, можно затем приступить к исследованию различных тканей.

Биохимику часто приходится выявлять присутствие тех или иных биомолекул или определять их количество в живых тканях, т. е. вести качественный или количественный анализ. Иногда эти определения можно выполнять непосредственно на самой ткани, но нередко им должен предшествовать тот или иной процесс экстракции или очистки.

Полезно потренироваться на каких-либо обычных пищевых продуктах или на растительном материале, определяя в них те биомолекулы, о которых шла речь в опыте 3.1. Там, где это возможно, мы предлагаем процедуру экстрагирования, которая позволит использовать для анализа чистый бесцветный раствор. Усвоив смысл таких процедур, студент сможет при необходимости сам предложить аналогичные методики.

Структура рнк. Определение биомолекул

Микроскопическое исследование тонких срезов ткани

Метод пригоден для знакомства с теми отложениями запасных веществ, которые можно видеть под микроскопом, например с крахмальными зернами в клубне картофеля.

Микроскопическое исследование срезов с соответствующим окрашиванием или какой-либо иной химической обработкой

Метод пригоден для выявления перечисленных ниже веществ.

Редуцирующие сахара. Поместить срез в несколько капель реактива Бенедикта и осторожно нагреть до кипения; при необходимости добавить воды, чтобы предотвратить высыхание.

Крахмал. Поместить в разбавленный раствор h/KI.

Белок. Поместить срез в несколько капель реактива Миллона и осторожно нагреть до кипения; при необходимости добавить воды, чтобы предотвратить высыхание.

Масла и жиры. Окрасить исследуемый материал, например семена, Суданом III, после чего промыть водой и(или) 70%-ным спиртом. Приготовить срезы и заключить в соответствующую среду.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Структура рнк. Определение биомолекул.

Биомолекулы. Нуклеиновые кислоты

89

Рибонуклеиновые кислоты [PHK(RNA)] представляют собой полимеры из нуклеозидфосфатных звеньев, соединенных фосфодиэфирной связью (см. с. 86). В качестве азотистых оснований в РНК присутствуют урацил, цитозин, аденин и тимин. В РНК можно также встретить множество необычных и модифицированных азотистых оснований.

А. Рибонуклеиновые кислоты

РНК принимают участие во всех стадиях процесса генной экспрессии и биосинтеза белка (см. с. 234). Свойства наиболее важных видов РНК приведены в таблице. Кроме того, здесь схематически показаны вторичные структуры молекул РНК.

В отличие от ДНК, РНК не образуют двойных спиралей, но содержат короткие участки со спаренными основаниями (см. с. 90). Это приводит к образованию субструктур, которые при двумерном изображении напоминают «шпильки» и петли, образующие фигуру типа «кленового листа». В таких структурах двухцепочечные участки соединены петлями. Множество фрагментов, в которых чередуются структуры типа шпилька—петля, содержится в высокомолекулярных РНК, таких, например, как рибосомная 16S-рРНК (16S-rRNA) (в центре). Кроме того, эти фрагменты образуют трехмерные структуры; следовательно, РНК подобно белкам имеют четвертичную структуру. До настоящего времени установлена четвертичная структура небольших PHK, прежде всего тРНК (tRNA). Из иллюстраций, приведенных на схеме Б и на с. 93 очевидно, что трехмерная укладка структуры типа «кленовый лист» окончательно не установлена.

PHK клетки существенно различаются по размерам, строению и продолжительности существования. Преобладающую часть представляют рибосомные РНК [ рРНК (rRNA)], которые в различных формах составляют структурный и функциональные части рибосом (см. с. 246). Рибосомные РНК синтезируются в ядре в процессе транскрипции на ДНК, там же подвергаются процессингу и ассоциируют с рибосомными белками, образуя рибосому (см. сс. 210, 240). Приведенная на схеме А бактериальная 16S-рРНК, включающая 1542 нуклеотида, является компонентом малой рибосомной субчастицы, в то время как небольшая 5S-рРНК (из 120 нуклеотидов) входит в состав большой субчастицы.

Матричная РНК [ мРНК (mRNA)] переносит генетическую информацию из клеточного ядра в цитоплазму. Ее транскрипты также сильно модифицируются в ядре (созревание мPHK, см. с. 242) Так как мРНК считывается на рибосоме кодон за кодоном она не должна складываться в стабильную третичную структуру. Спариванию оснований препятствуют белки, ассоциированные с мРНК . Из-за различного объема информации, которую могут нести мРНК, РНК этого типа сильно варьируют по размерам. Для мРНК характерно короткое время жизни, так как они быстро распадаются после трансляции. В сплайсинге предшественников мРНК (см. с. 242) принимают участие малые ядерные РНК [ мяРНК (snRNA, от англ. small nuclear RNA)]. Они ассоциированы c рядом белков, образуя «сплайсомы».

Б. Транспортные РНК ( tRNA Phe )

Транспортные РНК [тРНК (tRNA)] участвуют в процессе трансляции в качестве промежуточного связующего звена между нуклеиновыми кислотами и белками. Это небольшие молекулы РНК из 70-90 нуклеотидов, которые с помощью своих антикодонов "узнают" за счет спаривания оснований определенные кодоны на мРНК. На 3'-конце (ССА-3') они несут ту аминокислоту, которая согласно генетическому коду соответствует очередному кодону мРНК (см. c. 244).

Последовательность оснований и третичная структура фенилаланинспецифичной тРНК (tRNA Phe ) из дрожжей являются типичными для всех тРНК. В молекуле этой тРНК (см. также с. 93) содержится довольно много минорных и модифицированных оснований ( 1 , выделены темно-зеленым цветом). К ним относятся псевдоуридин (ψ), дигидроуридин (D), тимидин (T), встречающийся обычно в ДНК, а также множество метилированных нуклеотидов, таких, например, как 7-метилгуанидин (m 7 G) и входящий в состав антикодона 2'-О-метилгуанидин (m 2 G). Конформацию молекулы стабилизируют многочисленные пары оснований, часть из которых не соответствуют общим принципам спаривания оснований ( 2 ) (неканонические пары).

Структура РНК. Определение биомолекул.

Рибонуклеиновая кислота (РНК) - построена из монорибонуклеотидов, соединенных в одну цепь. В состав РНК входят: рибоза, фосфорная кислота, азотистые основания - А, Г, Ц, У. Размер молекулы РНК меньше, чем ДНК, но количество РНК в клетке больше. В структуре РНК выделяют три уровня организации молекулы:

Роль РНК

РНК содержится во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит в качестве пентозы рибозу (вместо дезоксирибозы), а в качестве одного из пиримидиновых оснований — урацил (вместо тимина). Анализ РНК, содержащейся в клетках, показал, что существуют три типа РНК, участвующих в синтезе белковых молекул. Это матричная, или информационная, РНК (мРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК). Все три РНК синтезируются непосредственно на ДНК, а количество РНК в каждой клетке находится в прямой зависимости от количества вырабатываемого этой клеткой белка.

Первичная структура РНК - это последовательное соединение монорибонуклеотидов при помощи фосфодиэфирной связи.

Вторичная структура РНК - это частично спирализованная одинарная полинуклеотидная цепь. Участки спирализации - шпильки - удерживаются при помощи водородных связей, образованных между комплиментарными основаниями: Г=Ц, А=У.

Третичная структура РНК - это пространственное расположение молекулы РНК. По составу, структуре и функциям РНК делятся на три типа: мРНК - матричная, тРНК - транспортная, рРНК - рибосомальная.

Матричная РНК.

Как показали анализы, мРНК составляет 3—5% всей РНК клетки. Это одноцепочечная молекула, образующаяся на одной из цепей ДНК в процессе, называемом транскрипцией. При синтезе мРНК копируется только одна цепь молекулы ДНК. Последовательность оснований в мРНК представляет собой комплементарную копию соответствующей цепи ДНК; длина ее варьирует в зависимости от длины полипептидной цепи, которую она кодирует. Большая часть мРНК находится в клетке лишь короткое время. У бактерий это может быть всего несколько минут, тогда как в развивающихся эритроцитах мРНК может служить матрицей для синтеза гемоглобина в течение нескольких дней.

Рибосомная РНК

Рибосомная РНК составляет примерно 80% всей РНК клетки. образует рибосому, составляя до 65% их массы. Число рибосом в клетке до 1 000 000. Она кодируется генами, находящимися в ДНК нескольких хромосом, расположенных в участке ядрышка. Последовательность оснований в рРНК сходна у всех организмов — от бактерий до высших растений и животных. рРНК содержится в цитоплазме, где она связана с белковыми молекулами, образуя вместе с ними клеточные органеллы, называемые рибосомами.

На рибосомах происходит синтез белка. Здесь «код», заключенный в мРНК, транслируется в аминокислотную последовательность полипептидной цепи.

Транспортная РНК

Транспортная РНК - тРНК - самые мелкие молекулы РНК с молекулярной массой до 30000, составляют 20% от всех РНК клетки. Функция заключается в транспортировке аминокислот на рибосому, каждой из 20 аминокислот соответствует своя тРНК. Молекула тРНК представляет одиночную цепь закрученную в сложную пространственную структуру - "клеверный лист". Аминокислота присоединяется к акцептирующему стеблю. Антикодоновая петля содержит антикодон из трех нуклеотидов, комплиментарных кодону данной аминокислоте в мРНК (мРНК содержит-ГЦЦ, то тРНК - ЦГГ) он обеспечивает специфичность взаимодействия тРНК и мРНК.

Существование транспортной РНК (тРНК) было постулировано Криком и продемонстрировано Хоглендом в 1955 г. У каждой аминокислоты имеется собственная семья молекул тРНК. Они доставляют содержащиеся в цитоплазме аминокислоты к рибосоме. Таким образом, тРНК служит промежуточной молекулой между триплетным кодом в мРНК и аминокислотной последовательностью полипептидной цепи. На долю тРНК приходится примерно 15% всей клеточной РНК; у этих РНК самая короткая полинуклеотидная цепь — в нее входит в среднем 80 нуклеотидов. В каждой отдельной клетке содержится более 20 различных молекул тРНК (идентифицировано уже 60). Все молекулы тРНК имеют сходную основную структуру.

На 5'-конце молекулы тРНК всегда находится гуанин, а на З'-конце — последовательность оснований ЦЦА. Последовательность нуклеотидов в остальной части молекулы варьирует и может содержать «необычные» основания, такие как инозин и псевдоурацил. Последовательность оснований в триплете антикодона строго соответствует той аминокислоте, которую переносит данная молекула тРНК. Каждая аминокислота присоединяется к одной из своих специфичных тРНК при участии фермента амино-ацил-тРНК-синтетазы. В результате образуется комплекс аминокислота-тРНК, известный как аминоацил-тРНК, в котором энергия связи между концевым нуклеотидом А в триплете ЦЦА и аминокислотой достаточна, чтобы в дальнейшем могла образоваться связь с соседней аминокислотой. Таким образом синтезируется полипептидная цепь.

Псевдоуридиновая петля -при помощи нее взаимодействует тРНК с рибосомой. Петля лигидроуридиновая - она участвует во взаимодействии со специфичным активирующим ферментом.


Локализация РНК в клетке:

Биологическая роль РНК в организме:

1. м-РНК выполняют функции матриц белкового синтеза, определяют аминокислотную последовательность белка.

2. р-РНК выполняют функцию структурных компонентов рибосом.

3. т-РНК - адапторные молекулы, участвуют в трансляции информации м-РНК в последовательность аминокислот в белках.

Биоинформатика в мире РНК-структур


Обзор

Понимание, как формируется пространственная конфигурация РНК, необходимо для разработки методов предсказания вторичных структур молекул и определения выполняемых ими функций в клетке живых организмов

рисунок А.В. Головина

Автор
Редакторы


Конкурс «био/мол/текст»-2014

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2014 в номинации «Биоинформатика и молекулярная эволюция».


Главный спонсор конкурса — дальновидная компания «Генотек».
Конкурс поддержан ОАО «РВК».

Спонсором номинации «Биоинформатика» является Институт биоинформатики.
Спонсором приза зрительских симпатий выступила фирма Helicon.
Свой приз также вручает Фонд поддержки передовых биотехнологий.

Вторичная структура РНК

Проект «Геном человека» [1], [2] показал, что последовательность ДНК — это еще не всё. РНК, как и ДНК, имеет огромное значение для жизни. Внутри клеток существует целый «зоопарк» РНК [3]. К примеру, матричная РНК (мРНК) является важным посредником между ДНК и белками. Она синтезируется на основе ДНК, после чего в эукариотической клетке отправляется из ядра в цитоплазму, где используется в качестве шаблона для синтеза белков на рибосоме . Рибосомные РНК (рРНК) представляют собой основной компонент рибосом, в частности, рРНК большой субъединицы выполняет синтез полипептидной цепи, рРНК малой — прочтение мРНК в соответствии с генетическим кодом. Транспортные РНК (тРНК) переносят к аминокислоты к рибосомам, где происходит синтез белков. Другие виды РНК, такие как микроРНК или интерферирующие РНК, длинные некодирующие РНК, РНК-губки и циклические РНК, участвуют в клеточной регуляции. Всё разнообразие функций, выполняемых РНК, нельзя объяснить только на основании данных о последовательности нуклеотидов. Очевидно, в РНК есть что-то еще.

У прокариот процесс транскрипции и трансляции обычно сопряжен в пространстве и во времени. — Ред.

Дело в том, что РНК, подобно белковым молекулам [4], не существуют в виде простой цепочки. Нуклеотиды РНК взаимодействуют друг с другом, объединяясь в пары по принципу комплементарности, в результате чего молекула нуклеиновой кислоты приобретает причудливую конфигурацию: возникают петли, шпильки, псевдоузлы и другие формы (рис. 1). Если первичная структура — это просто последовательность нуклеотидов, то подобные образования относятся к вторичной структуре. И этот уровень организации молекулы также несет информацию, которая используется в регуляции таких процессов, как транскрипция ДНК, сплайсинг РНК, изменение активности генов с помощью микроРНК, а также транспорт транскриптов в определенные области клетки [5].

Разнообразие вторичных структур РНК

Рисунок 1. Разнообразие вторичных структур РНК: а — шпилька с внутренней петлей; б — дуплекс с двумя выступами; в — псевдоузел; г — молотовидный рибозим (hammerhead ribozyme) PDB: 1NYI; д — тРНК PDB: 1J1U; е — РНК из белок-РНКовго комплекса, узнающего и осуществляющего доставку на мембрану синтезируемых на рибосоме мембранных белков (SRP RNA) PDB: 1Z43. Справа от каждой структуры показана ее 3D-модель: предсказанные с помощью вычислительных методов (синий цвет) и полученные экспериментально (желтый цвет).

Вторичная структура также влияет на взаимодействие РНК с молекулами, например, со специфическими белками RBP (RNA binding proteins). Они связываются с РНК с образованием рибонуклеопротеиновых комплексов и регулируют сплайсинг, трансляцию и другие процессы. Если участок связывания «закрыт» петлей, белок не сможет провзаимодействовать с молекулой [6]. Роль вторичной структуры можно также проиллюстрировать воздействием мутаций. В работе Мэтью Халворсена (Matthew Halvorsen), опубликованной в журнале PLoS Genetics в 2010 году, изучались мутации, связанные с заболеваниями человека и находящиеся в регуляторных участках РНК, называемых 5′- и 3′-нетранслируемыми областями. Эти области отвечают за регуляцию процесса трансляции, деградацию РНК, участвуют в РНК-интерференции и при этом сильно структурированы. Мутации могут вызвать серьезные структурные перестройки, что становится причиной таких заболеваний, как наследственный синдром гиперферритинемии-катаракты, ретинобластома или гипертензия [7].

Вторичная структура РНК большой рибосомной субъединицы

Рисунок 2. Вторичная структура РНК большой рибосомной субъединицы Escherichia coli

При наличии определенных факторов конфигурация РНК может изменяться, что, в свою очередь, влияет на регуляцию генов. Один из лучших примеров специфичности и динамичности вторичной структуры — РНК-переключатели (riboswitch), имеющиеся в клетках бактерий, дрожжей, водорослей и высших растений. Это участки мРНК, которые способны получать информацию о внутриклеточных условиях, связываясь с лигандами. Обычно РНК-переключатели состоят из двух доменов — аптамера, который взаимодействует с лигандами, и домена экспрессии. Как только лиганд (аминокислота, нуклеотиды, ионы металлов) связывается с аптамером, происходят изменения во вторичной структуре примыкающего к аптамеру домена экспрессии, что имеет значение для дальнейшей судьбы мРНК. Например, возникновение шпилек может воспрепятствовать транскрипции или синтезу белка в рибосомах [5]. Структура аптамера, подобно устройству дверного замка, подходит только определенному лиганду, который играет роль ключа

РНК-структуромика

Весь клеточный набор вторичных РНК-структур называется «РНК-струтурóмом» (по аналогии с генóмом или транскриптóмом) [2]. Исследование структурома позволяет ученым понять, как определенные разновидности (мотивы) укладки молекул РНК связаны с участием в различных клеточных процессах, таких как транскрипция, сплайсинг, локализация в клетке, трансляция и регуляция транскриптов. Здесь ученые сталкиваются с определенными проблемами. Недостаточно высокая эффективность методов изучения структуры РНК и сложность получения длинных фрагментов РНК — существенные препятствия на пути к полному описанию структурома. Однако буквально за последние годы технологии секвенирования совершили огромный скачок в развитии. Появились инструменты секвенирования нового поколения, которые позволяют с высокой точностью и относительно быстро определить последовательности ДНК и РНК. Очень важно также использование вычислительных методов, которые сильно продвинулись в своей способности точно предсказывать структуру РНК. При этом все же золотым стандартом определения структуры РНК был и остается эксперимент [5].

Исследования с использованием компьютерных методов привели ко многим открытиям. Например, транспортные РНК обладают структурными особенностями, которые соответствуют их функциям. Для поиска тРНК существуют различные инструменты, например, программа tRNAscan-SE, написанная на популярном среди биоинформатиков языке Perl. Она занимается поиском «подозрительных» участков в геноме, которые могут кодировать тРНК. После тщательного «просеивания» этих участков, остаются гены, которые являются истинными тРНК с вероятностью в 99–100%. Программа ориентируется не только на последовательность нуклеотидов, которая может различаться у разных тРНК, но также на вторичную структуру, являющейся общей для всех тРНК и напоминающей лист клевера. Кроме этого, tRNAscan-SE сравнивает гены-кандидатов с последовательностью, структура которой известна. Если гены-кандидаты формируют такую же структуру, значит они с высокой вероятностью являются тРНК [8].

Естественный отбор имеет значение

Структуры РНК, как и гены, в процессе эволюции могут подвергаться мощному отсекающему отбору, иными словами, большая часть изменений отбраковывается. Ковариационный метод предсказания структуры основан на том простом факте, что множество известных структур РНК консервативны, то есть сохраняются в процессе эволюции, поскольку любое отклонение от этой структуры может повлечь за собой серьезные нарушения и смерть организма. Все тРНК имеют вид листа клевера, поскольку это важно для их участия в процессе синтеза белка. В ковариационном методе производится поиск консервативных пар нуклеотидов среди гомологичных генов (эволюционировавших от общего предкового гена).

Как узнать, что на данной последовательности образуется структура? Для этого нужно, чтобы замена нуклеотида на одном участке последовательности обязательно сопровождалась компенсаторной заменой нуклеотида на другом участке последовательности [9]. Это значит, что оба нуклеотида участвуют в формировании структуры, к примеру, образуя пару G—C или A—U. Структура сохранится, если пара G—C заменится на пару A—U или наоборот. Когда в распоряжении есть достаточное количество гомологов, то, исходя из расположения многих консервативных пар, можно вывести вторичную структуру РНК (рис. 3).

Консервативность пар оснований в гомологичных последовательностях

Рисунок 3. Консервативность пар оснований в гомологичных последовательностях является основой для предсказания вторичной структуры. Стрелочками указаны взаимодействующие друг с другом нуклеотиды, которые могут быть различными в ряду последовательностей, однако сохраняющие конфигурацию молекулы (справа).

Вездесущая термодинамика

Когда в распоряжении исследователя имеется не ряд гомологов, а только одна последовательность, имеет смысл воспользоваться термодинамическим моделированием. Предполагается, что молекула РНК правильной структуры находится в состоянии термодинамического равновесия [10]. На основе энергетических параметров данной молекулы, полученных экспериментально, строятся всевозможные конфигурации вторичной структуры. Среди них ищут наиболее устойчивую, которая и будет правильным решением. Для коротких цепочек, длиной менее 700 пар оснований, данный метод корректно определяет структуру для 70% пар. Однако если цепочка длиннее, точность падает вплоть до 20%. Альтернативный подход — использование алгоритмов, основанных на вероятностном моделировании, — к сожалению, сильно уступает термодинамическим методам. Другая возможная стратегия — объединение термодинамического моделирования и машинного обучения [11]. Также с помощью PARS-метода можно выяснить, какие нуклеотиды являются непарными, чтобы исключить их из алгоритма и улучшить точность предсказания.

В методах предсказания вторичной структуры существуют существенные ограничения. Конформационные изменения РНК-переключателей в результате взаимодействия с лигандом настолько сложно смоделировать, что существующие алгоритмы оказываются бесполезными. Также большие трудности вызывает предсказание псевдоузлов, состоящих из двух совмещенных особым образом шпилек (рис. 1). Псевдоузлы встречаются в рРНК, тРНК, а также в геномах вирусных РНК, где они участвуют в процессах трансляции [12]. Для их поиска разрабатывают специальные методы, которые ориентированы на отдельные типы псевдоузлов. Однако с увеличением длины последовательности экспоненциально растет время, затрачиваемое алгоритмом на решение данной задачи. В этих условиях эксперимент становится необходим, позволяя ученым улучшить существующие алгоритмы и разработать новые стратегии поиска.

В игру вступает параллельное секвенирование

В параллельном анализе структуры РНК (или PARS-методе) применяются инструменты секвенирования нового поколения, которые позволяют получить миллионы расшифрованных последовательностей за один единственный эксперимент. Сначала образцам РНК позволяют свернуться с образованием вторичной структуры, затем их подвергают воздействию рибонуклеаз — ферментов, катализирующих расщепление связи между нуклеотидами. В PARS-методе используют два типа рибонуклеаз — V1 и S1. Первая расщепляет спаренные участки, вторая — простую цепь. Полученные фрагменты конвертируют в ДНК и секвенируют. Те фрагменты, которые были обработаны V1, в большинстве случаев обрываются на том нуклеотиде, который участвовал в образовании вторичной структуры. Сравнение большого числа копий одной РНК, позволяет судить об интенсивности расщепления на определенных участках молекулы и определить, формируется ли на этом участке вторичная структура [5].

С помощью PARS в 2010 году Кертес и его коллеги изучили вторичную структуру транскриптома дрожжей, проанализировав приблизительно 4,2 миллиона нуклеотидов в 3 тысячах транскриптов. Ими были обнаружены регуляторные мотивы, например, участок внутренней посадки рибосомы URE2, который позволяет начать синтез белка не с одного из концов мРНК, а с середины молекулы. Это исследование, опубликованное в журнале Nature [13], показало, что PARS-метод способен пролить свет на глобальную структурную организацию мРНК. Было открыто преимущественное расположение вторичных структур в кодирующих участках по сравнению с нетранслируемыми областями, а также их роль в регуляции процесса трансляции, который протекает тем активнее, чем менее структурирован сайт инициации трансляции. Объединение параллельного анализа с программными средствами предсказания конфигурации, а также термодинамическим моделированием, дает в руки ученых мощный инструмент для более глубокого постижения мира РНК-структур, что способствует появлению новых гипотез и открытий, касающихся регуляции клеточных процессов.

Стóит отметить, что данный метод дает весьма приблизительную и косвенную информацию о вторичной структуре РНК. На данный момент разработаны более «продвинутые» экспериментальные методики, основанные на химической модификации неспаренных нуклеотидов и позволяющие получать данные более высокого разрешения (напр. SHAPE). — Ред.

Самая большая РНК-лаборатория в мире

Моделирование вторичной структуры РНК, несмотря на большое количество методов, до сих пор остается сложной задачей. Не все принципы известны, а экспериментальные данные настолько обширны, что на анализ, который проводят небольшие группы ученых, уходит много труда и времени. Чтобы решить эту проблему, в университете Карнеги-Меллон и Стэнфордском университете разработали краудсорсинговый проект EteRNA.

EteRNA объединяет 37 тысяч интернет-пользователей, которые занимаются созданием библиотеки РНК-структур в режиме онлайн-игры . Большинство энтузиастов не обладают никакими специальными биологическими знаниями. Участники проекта, в число которых может попасть любой желающий, подбирают последовательность нуклеотидов РНК, пытаясь получить искомую структуру. Лучшие решения проверяются экспериментально и публикуются на сайте проекта для окончательной проверки. Если результаты будут признаны удовлетворительными, то они становятся основой для новых термодинамических правил построения конфигурации молекул, использующихся в алгоритме EteRNABot. К 2014 году накопилось свыше 100 тысяч решений, и большинство из них ранее не применялись в моделировании вторичной структуры. За все время проекта EteRNABot стал более точным, чем другие алгоритмы предсказания. В ближайшем будущем, как надеются авторы проекта, их «Большая Открытая Лаборатория» (Massive Open Laboratory) будет способна решить широкий спектр практических задач, начиная от моделирования псевдоузлов и разработки синтетических РНК-переключателей и заканчивая моделированием РНК-наномашин.

В последние годы все больше серьезных научных проектов идут «в народ» в форме онлайн-игр. Такое явление получило название «гражданской науки». Примером аналогичной инициативы служит аркадная игра FoldIt, нацеленная на предсказание строения белковых молекул: «Тетрис XXI века» [14]. — Ред.

Прошло около 10 лет с окончания проекта «Геном человека». С тех пор было совершено много открытий. Сравнительно недавно стало известно, что транскрибируется 95% человеческого генома , [15]. Это означает, что большая часть мутаций переходит в транскриптом, влияя на вторичную структуру молекул, которая регулирует многие клеточные процессы. Ранее ускользающий от внимания РНК-структуром стал объектом интенсивного изучения не только отдельных групп биоинформатиков, но и «гражданских ученых» из числа обычных людей. Каждый год публикуется несколько сотен статей, посвященных исследованиям структуры РНК, совершенствуются методы, разрабатываются новые алгоритмы. Мы проникаем все глубже в мир информации, организованной в виде биологических макромолекул, постигаем основные принципы и законы, чтобы когда-нибудь воспользоваться ими во благо всех нас.

Концепция «мусорной ДНК» неоднократно сильно менялась: лет 10 назад бытовало мнение, что ДНК «активна лишь на 10%», а всё остальное является бесполезным кладбищем генов. В последнее время эти воззрения сильно модифицировались, в который раз подтверждая, что не все так просто: «Сколько сора в нашей ДНК» [16]. — Ред.

О молекулах РНК

image

Для поддержания жизни в живом организме происходит множество процессов. Некоторые из них мы можем наблюдать — дыхание, прием пищи, избавление от продуктов жизнедеятельности, получение информации органами чувств и забывание этой информации. Но большая часть химических процессов скрыта от глаз.


Справка. Классификация
По-научному, обмен веществ это метаболизм.

Метаболизм обычно делят на две стадии:
в ходе катаболизма сложные органические молекулы распадаются на более простые, с получением энергии; (энергия тратится)
в процессах анаболизма затрачивается энергия на синтез из простых молекул сложных биомолекул. (энергия запасается)

Биомолекулы, как видно выше, делятся на малые молекулы и большие.

Малые:
Липиды (жиры), фосфолипиды, гликолипиды, стеролы, глицеролипиды,
Витамины
Гормоны, нейромедиаторы
Метаболиты
Большие:
Мономеры, олигомеры и полимеры.

Мономеры Олигомеры Биополимеры

Аминокислоты Олигопептиды Полипептиды, белки
Моносахариды Олигосахариды Полисахариды (крахмал, целлюлоза)
Нуклеотиды Олигонуклеотиды Полинуклеотиды, (ДНК, РНК)

В столбце биополимеры находятся полинуклеотиды. Именно здесь находится рибонуклеиновая кислота — объект статьи.

Рибонуклеиновые кислоты. Строение, назначение.

image


На рисунке показана молекула РНК.
Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют функции по хранению, передаче и реализации наследственной информации.

Сходство и отличие РНК и ДНК

Как видно, есть внешнее сходство с известной структурой молекулы ДНК (дезоксирибонуклеиновой кислотой).
Однако, РНК может иметь как двухцепочечную структуру, так и одноцепочечную.
Нуклеотиды (пяти- и шестиугольники на рисунке)
Кроме того, нить РНК состоит из четырех нуклеотидов (или азотистых оснований, что одно и то же): аденин, урацил, гуанин и цитозин.
Нить ДНК же состоит из другого набора нуклеотидов: аденин, гуанин, тимин и цитозин.
Химическое строение полинуклеотида РНК:

Как видим, имеются характерные нуклеотиды урацил (для РНК) и тимин (для ДНК).
Все 5 нуклеотидов на рисунке:

Шестиугольники на рисунках — это бензольные кольца, в которые, вместо углерода, встраиваются другие элементы, в данном случае, это азот.

Бензол. Для справки.


Химическая формула бензола — C6H6. Т.е. в каждом угле шестиугольника находится атом углерода. 3 дополнительные внутренние линии в шестиугольнике указывают на наличие двойных ковалентных связей между этими атомами углерода. Углерод — элемент 4 группы периодической таблицы Менделеева, следовательно, у него 4 электрона могут образовать ковалентную связь. На рисунке — одна связь — с электроном водорода, вторая — с электроном углерода слева и еще 2 — с 2 электронами углерода справа. Впрочем, физически существует единое электронное облако, охватывающее все 6 атомов углерода бензола.

Соединение азотистых оснований

image

Комплементарные нуклеотиды друг с другом сцепляются (гибридизуются) с помощью водородных связей. Аденин комплементарен урацилу, а гуанин — цитозину. Чем длиннее на данной РНК комплементарные участки, тем прочнее будет образуемая ими структура; наоборот, короткие участки будут нестабильными. Это определяет функцию конкретной РНК.
На рисунке фрагмент комплементарного участка РНК. Азотистые основания закрашены синим цветом

Структура РНК

Сцепление многих групп нуклеотидов образуют РНК-шпильки (первичная структура):

Множество шпилек в ленте сцепляются в двойную спираль. В развернутом виде такая структура напоминают дерево (Вторичная структура):

Спирали так же взаимодействуют друг с другом (третичная структура). Видно, как разные спирали соединены друг с другом:

Другие РНК сворачиваются аналогично. Напоминает набор лент (четвертичная структура).

Заключение


Для вычисления конформаций, которые примут РНК, по их первичной последовательности существуют программы
Есть множество задач, находящихся в процессе решения. Например явление РНК-интерференции, теломеразный РНК-компонент
Возможно, кто-то из вас, участники хабра, поучаствует в одном из этих проектов))

Читайте также: