Хлоропласты. Белоксинтезирующий аппарат и теория эндосимбиоза.

Обновлено: 01.05.2024

Маргоулиц, Кайер и Кларес – первыми предположили Эндосимбиотическую теорию, а Лиин продолжил ее.

Наибольшее распространение получила гипотеза об эндосимбиотическом происхождении митохондрий, в соответствии с которой современные митохондрии животных берут свое начало от альфа-протеобактерий (к которым принадлежит современная Rickettsia prowazekii), внедрившихся в цитозоль клеток-предшественников. Считается, что за время эндосимбиоза бактерии передали большую часть своих жизненно важных генов хромосомам клетки-хозяина, сохранив в своем геноме (в случае клеток человека) информацию лишь о 13 полипептидах, 22 тРНК и двух рРНК. Все полипептиды входят в состав ферментативных комплексов системы окислительного фосфорилирования митохондрий.

митохондрии образуются за счет эндоцитоза древней крупной анаэробной прокариоты, которая поглотила более мелкую аэробную прокариоту. Отношение таких клеток сначала были симбиотические, а затем крупная клетка стала контролировать процессы, происходящие в митохондрии.

-разница в строении внутренней и наружной мембраны митохондрий

-наличие в митохондриях собственной кольцевой ДНК (как у бактерий), которая содержит гены для определенных митохондриальных белков

-наличие в мембране собственного белок-синтезирующего аппарата, причем рибосомы в нем прокариотного типа

-деление митохондрий происходит простым бинарным путем, либо почкованием и не зависит от деления клетки.

-Несмотря на определенную независимость митохондрии, находятся под контролем эукариотной клетки. Например, в гиалоплазме синтезируется некоторые белки, необходимые для нормального функционирования митохродний, и некоторых белковых факторов, которые регулируют деление митохондрий.

-ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии

Клеточное ядро, нуклеоцитоплазма

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов

В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра.

Жгутики и реснички

Линн Маргулис предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путём деления, а путём достраивания нового органоида рядом со старым.

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами

Поможем написать любую работу на аналогичную тему

Эндосимбиогенная теория происхождения эукариот. Происхождение митохондрий, пластид и рибосом в эукариотической клетке.

Эндосимбиогенная теория происхождения эукариот. Происхождение митохондрий, пластид и рибосом в эукариотической клетке.

Эндосимбиогенная теория происхождения эукариот. Происхождение митохондрий, пластид и рибосом в эукариотической клетке.

Биология клетки/Часть 1. Клетка как она есть/1/2

Эукариотические клетки - системы более высокого уровня организации, чем прокариотические


Клетки эукариот — сложные генетические системы, имеющие другой уровень организации, чем прокариотические клетки.

Во-первых, у эукариот намного сложнее устроена система регуляции работы генов. Это позволяет им приспосабливаться к более разнообразным условиям среды без изменений в их ДНК. Многоклеточным организмам это позволяет создавать разные типы клеток, имеющие один и тот же генотип.

Во-вторых, у подавляющего большинства эукариот есть митохондрии, а у многих ещё и пластиды. Согласно общепризнанной в настоящее время точке зрения, эти органоиды имеют симбиотическое происхождения. Их предками были бактерии, которые вступили в симбиоз с предками эукариот.

Теория симбиотического (симбиогенного) происхождения органоидов клетки получила название теории симбиогенеза.

Теория эндосимбиотического происхождения хлоропластов впервые была предложена в 1883 году Андреасом Шимпером, показавшим их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина и О. В. Баранецкого о двойственой природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира.

Он предложил деление органическлого мира на "микоплазму" и "амебоплазму", во многом предугадав деление, соответственно, на прокариот и эукариот (правда, к прокариотам он ошибочно отнес грибы). Мережковский также предполагал симбиогеное происхождение ядра от клетки прокаиота, внедрившегося в другую клетку - эту идею и сейчас поддерживают некоторые ученые.

Фаминцин в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и в случае с водорослями лишайника.

В 1920-е годы теорию симбиогенеза развивал российский ботаник Б.М. Козо-Полянский [1]. Его работы, публиковавшиеся на русском языке, остались полностью неизвестными на западе. Еще более четко, чем Мережковский, Козо-Полянский осознал и обозначил границу между про- и эукариотами. Теорию симбиогенеза он распространил на митохондрии (и другие органоиды, включая ядро). Он также отчасти предвосхитил современные представления о внеядерной наследственности. Хотя у симбиогенеза находились адепты и в 30-40-е годы, в целом эту теорию большинство ученых считали ненаучной фантастикой. Второе рождение расширенная и конкретизированная теория получила в работах Линн Маргулис (Маргелис) начиная с 1960-х гг. Маргелис высказала предположение о симбиотическом происхождении не только митохондрий и хлоропластов, но и жгутиков (от спирохет), которое в дальнейшем не получило подтверждения.

Современная теория симбиогенеза утверждает, что митохондрии и хлоропласты — потомки определённых групп бактерий, которые вступили в симбиоз с предками современных эукариот. В ходе эволюции бактерии-эндосимбионты превратились в полуавтономные органоиды. Они сохранили способность синтезировать некоторые белки автономно от клетки-хозяина и способность размножаться путем деления. Но значительная часть генетического материала митохондрий и хлоропластов переместилась в ядро. В результате эти органоиды утратили способность размножаться вне клетки-хозяина, свойственную многим симбиотическим бактериям.

  • имеют две полностью замкнутые мембраны. При этом их внутренняя мембрана сходна по составу с плазмалеммойбактерий.
  • размножаются делением пополам, причем делятся иногда независимо от деления клетки, никогда не синтезируются заново.
  • генетический материал — кольцевая ДНК, не связанная с гистонами (По доле ГЦ-пар ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
  • имеют свой аппарат синтеза белка — рибосомы и др. прокариотического типа — c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
  • многие белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

Анализ нуклеотидных последовательностей ДНК митохондрий и хлоропластов свидетельствует о том, что каждый из этих органоидов был приобретены предками эукариот однократно. Все митохондрии всех современных эукариот имеют одного общего предка, сходного с современными альфа-протеобактериями. Все хлоропласты тоже имеют одного общего предка, сходного с современными цианобактериями. Особенно близки к предкам хлоропластов по строению мембран и составу фотосинтетических пигментов бактерии рода прохлорон (Prochloron).

Отдельного комментария заслуживает наличие двух мембран у митохондрии и «типичных» хлоропластов. Широко распространенное заблуждение – бактериальное происхождение одной внутренней мембраны и возникновение внешней мембраны из мембраны пищеварительной вакуоли. Оно настолько укоренилось, что тиражируется во вполне солидных и уважаемых источниках (см., например, h учебник Альбертса «Молекулярная биология клетки», 5-е издание).

На самом же деле наружная мембрана митохондрий и хлоропластов гомологична наружной мембране их предков – грамотрицательных бактерий. «Бегство» из пищеварительной вакуоли – обычная тактика многих внутриклеточных бактерий. Так ведут себя многие возбудители болезней человека – листерии, риккетсии и др.

Во-первых, если бы наружная мембрана была гомологична мембране фагосомы, то белки в нее доставлялись путем везикулярного транспорта. Если это и происходит, то в виде исключения; в целом митохондрии и пластиды изолированы от «единой» мембранной системы, белки и липиды доставляются в них с помощью особых механизмов. Во-вторых, только в наружной мембране митохондрий, хлоропластов и грамм-отрицательных бактерий встречается уникальное семейство белков из группы бета-бочек, и только в этих мембранах работает уникальный, имеющий общее происхождение механизм встраивания этих белков.

Геном митохондрий

Наиболее полный из изученных геномов митохондрий у протиста Reclinomonas. В ДНК его митохондрии содержится более 60 «белковых» генов. У этого протиста в митохондриальной ДНК закодированы 27 рибосомальных белков, а также 23 белка, участвующих в работе электронтранспортной цепи и в окислительном фосфорилировании. Кроме того, у этого же протиста в мтДНК закодированы как минимум пять белков, участвующих в транскрипции (субъединицы РНК-полимеразы) и трансляции.

У человека (как и у большинства животных) в ДНК митохондрий кодируются рРНК митохондриальных рибосом и большинство типов митохондриальных тРНК. При этом геном митохондрий человека и других млекопитающих содержит всего 13 «белковых» генов из примерно 1500 генов, кодирующих белки митохондриального протеома.

Геном пластид

Перенос генов из органоидов в ядро

Таким образом, очевидно, что большинство генов предков митохондрий и хлоропластов переместились из митохондрий в ядро и встроились в ядерный материал клетки-хозяина. Механизмы этого процесса не вполне ясны; предполагается участие в них мобильных генетических элементов или вирусов. Но сама возможность «горизонтального переноса генов» между бактериями и ядром эукариотической клетки не подлежит никакому сомнению. Сейчас известно множество генов растений, протистов и животных, явно полученных путем горизонтального переноса от прокариот. Наблюдается такой перенос и от внутриклеточных эндосимбионтов или паразитов. Так, бактерия Agrobacterium tumefaciens встраивает свои гены в хромосомы растений с помощью специальных плазмид, а бактерия Wolbachia встроила в хромосому некоторых насекомых-хозяев свой практически полный геном.

Необычные черты генома митохондрий

В иРНК митохондрий особенно часто встречаются вариации стандартного генетического кода, которые приведены в таблице.

Пример Кодон Обычное значение Читается как:
Митохондрии, в частности у Saccharomyces cerevisiae CU(U, C, A, G) Лейцин Серин
Митохондрии высших растений CGG Аргинин Триптофан
Митохондрии (у всех без исключения исследованных организмов) UGA Стоп Триптофан
Митохондирии млекопитающих, дрозофилы, S. cerevisiae и многих простейших AUA Изолейцин Метионин = Старт
Митохондрии млекопитающих AGC, AGU Серин Стоп
Митохондрии дрозофилы AGA Аргинин Стоп
Митохондрии млекопитающих AG(A, G) Аргинин Стоп


У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.

Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК.

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК — идентичные макси-кольца (20-50 штук) длиной около 21 т.п.о. и мини-кольца (20 000 — 55 000 штук, около 300 разновидностей, средняя длина около 1000 п.о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка.

В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец.

    Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6 Статья об особенностях кинетопластного генома трипаносом (англ.) Origin and evolution of mitochondrial proteome

В большинстве учебников ботаники и физиологии растений описаны пластиды (хлоропласты), характерные для цветковых растений. Они имеют две наружные мембраны, тилакоиды, собранные в стопки — граны, и два основных фотосинтетических пигмента — хлорофилл а и хлорофилл b.Но на самом деле пластиды гораздо разнообразнее и по строению, и по составу пигментов.

Первичные пластиды характерны, кроме высших растений, для зеленых и харовых водорослей, красных водорослей и глаукофитовых. Все эти пластиды окружены двумя мембранами. Считается. что они были приобретены в результате симбиоза гетеротрофных жгутиковых эукариот с предками хлоропластов — цианобактериями.

При этом и у этих групп водорослей пластиды заметно различаются. У зеленых и харовых водорослей пластиды по строению и составу пигментов такие же, как у высших растений. Считается, что высшие растения произошли от водорослей, сходных с харовыми. По строению их хлоропласты наиболее сходны с цианобактерией Prochloron. Эти пластиды содержат две формы хлорофилла — хлорофилл а и хлорофилл b. Те же формы хлорофилла имеет и Prochloron.

У красных и глаукофитовых водорослей тилакоиды не собраны в граны, а на их поверхности сидят особые тельца — фикобилисомы. Они состоят из белков фикобилипротеинов. Окраску им придают входящие в их состав хромофоры фикобилины: фикоэритрин — красную, а фикоцианин — голубоватую. Они улавливают свет и передают его хлорофиллу а. У красных водорослей и некоторых цианобактерий есть также хлорофилл d.

По строению и составу пигментов эти хлоропласты наиболее сходны с большинством видов цианобактерий. При этом хлоропласты глаукофитовых водорослей имеют удивительную особенность: между двумя мембранами у них есть слой пептидогликана — вещества, образующего клеточные стенки бактерий. Эти хлоропласты, называемые часто цианеллы, рассматривают как «живые ископаемые» — эндосимбиотические органеллы, сохранившие примитивные предковые признаки.

Вторичные пластиды характерны для большинства групп водорослей. Они были приобретены в результате эндосимбиоза гетеротрофных протистов с автотрофными протистами, то есть в результате поглощения хищником-эукариотом другого эукариота — автотрофа, уже имевшего первичные пластиды. Исходно вторичные пластиды окружены четырьмя мембранами (снаружи внутрь — мембрана пищеварительной вакуоли, плазмалемма эукариотической клетки, две мембраны первичной пластиды). Впоследствии у многих групп водорослей одна или две их четырех мембран вторичных пластид редуцировались, а у некоторых все четыре мембраны сохранились.

Наиболее близки к исходному строению хлоропласты криптофитовых водорослей и хлорарахиевых водорослей. У этих небольших групп одноклеточных водорослей хлоропласты окружены четырьмя мембранами. У криптофитовых они содержат хлорофилл а, хлорофилл с и фикобилипротеины. У хлорарахниевых присутствуют хлорофилл а и хлорофилл b. Между второй и третьей мембраной находится нуклеоморф — рудиментарное ядро с сильно уменьшенным ядерным геномом.

Сейчас секвенированы полные геномы всех компартментов обоих групп водорослей. Оба исследованных нуклеоморфа содержат по три маленькие хромосомы (у изученной криптофитовой водоросли общий размер генома всего 550.000 п.н.). Из белковых генов нуклеоморфов всего примерно по 30 генов кодируют белки для первичной пластиды; остальные — это в основном «гены домашнего хозяйства» Их тоже не хватает: в перипластидное пространство (то есть в эукариота-симбионта) попадает из цитоплазмы хозяина более 2000 белков у криптофитовых и около 1000 у хлорарахниевых. В свою очередь, из нуклеоморфов в ядро переместились сотни генов. Геном нуклеоморфа у криптофитовых очень компактный: в нем короткие интроны, почти нет спейсеров, а 91 % последовательностей — кодирующие, как у прокариот!

У гаптофитовых и диатомовых водорослей, недавно открытого фототрофного протиста Chromera velia и у ее ближайших родственников споровиков (Apycomplexa) есть четырехмембранные пластиды, утратившие нуклеоморф. У других водорослей (например, динофлагеллят и эвгленовых) встречаются трехмембранные хлоропласты со своеобразным набором хлорофиллов. Наличие трех мембран можно объяснить тем, что после двойного симбиоза (как у криптофитовых) одна из мембран редуцировалась.

По-видимому, в данном случае это была наружная мембрана клетки эукариотического симбионта; сохранились обе мембраны первичной пластиды и мембрана фагосомы.

Кем же были предки вторичных пластид? Сейчас считается, что хлорарахниевые и эвгленовые независимо друг от друга поработили зеленые водоросли. Все остальные группы, имеющие вторичные пластиды, приобрели в свое время в качестве симбионта красную водоросль

[5]Patrick J. Keeling. Diversity and evolutionary history of plastids and their hosts.\

Хлоропласты. Белоксинтезирующий аппарат и теория эндосимбиоза.

Хлоропласты. Белоксинтезирующий аппарат и теория эндосимбиоза.

У эукариот фотосинтез протекает в органеллах, называемых хлоропластами. Их число может варьировать от одного (как у одноклеточной водоросли Chlorella) до примерно ста (как в клетках палисадной паренхимы). Диаметр хлоропластов составляет 3—10 мкм (в среднем около 5 мкм), поэтому они хорошо видны в световой микроскоп.

Хлоропласты. Белоксинтезирующий аппарат и теория эндосимбиоза.

Хлоропласта окружены двойной мембраной, которая образует оболочку хлоропласта. Они всегда содержат хлорофилл и другие фотосинтетические пигменты, расположенные на системе мембран. Мембраны погружены в основное вещество, или строму. Детали строения хлоропластов можно выявить при помощи электронного микроскопа. На электронной микрофотографии низкого разрешения показан типичный вид хлоропластов в клетке мезофилла. На рисунке показаны электронные микрофотографии хлоропластов, а на другом рисунке схема строения хлоропласта и его мембранных систем.

На мембранах протекают световые реакции фотосинтеза. Здесь расположены хлорофилл и другие пигменты, ферменты и переносчики электронов. Система состоит из множества заполненных жидкостью плоских мешочков, называемых тилакондами: тилакоиды образуют стопки, или граны, которые соединены друг с другом ламел-лами (одиночными фанами). Каждая грана напоминает стопку монет, а ламелла — пластинку. В световом микроскопе фаны едва видны в виде мелких зерен.

В строме происходят темповые реакции фотосинтеза. Структура стромы напоминает гель; в ней содержатся растворимые ферменты, в частности ферменты цикла Кальвина, а также сахара и органические кислоты. Избыток углеводов, образуемых в процессе фотосинтеза, запасается в виде крахмальных зерен. С мембранами часто связаны сферические липидные капли. Они становятся крупнее по мере разрушении мембран в процессе их старения. По-видимому, в этих каплях аккумулируются липиды из мембран.

Хлоропласты. Белоксинтезирующий аппарат и теория эндосимбиоза.

Белоксинтезирующий аппарат и теория эндосимбиоза

Интересной особенностью хлоропластов помимо фотосинтеза, является их белоксинтезирующий аппарат. В шестидесятых годах XX в. было показано, что и хлоропласты, и митохондрии содержат ДНК и рибосомы. Это навело на мысль, что хлоропласты и митохондрии, возможно, являются прокариотическими организмами, внедрившимися в эукариотическую клетку на ранних этапах развития жизни. Таким образом, в соответствии с эндосимбиотической теорией эти органеллы представляют крайнюю форму симбиоза. Некоторые данные в пользу этой теории приведены в таблице.


Сравнение прокариот, хлоропластов и митохондрий с эукариотами

Фотосинтезирующие бактерии (прокариоты) не содержат хлоропластов. Их фотосинтетические пигменты расположены на мембранах, разбросанных по цитоплазме. Таким образом, целая клетка становится похожей на один хлоропласт, причем она имеет практически такие же размеры. В настоящее время полагают, что хлоропласты являются потомками фотосинтезирующих бактерий.

Хлоропласты и митохондрии, как было показано, действительно могут синтезировать некоторые собственные белки. При этом для выполнения этой задачи некоторые гены должны переместиться в ядро клетки, где они взаимодействуют с ядерной ДНК. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать независимо.

- Вернуться в оглавление раздела "Биология."

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Симбиогенез


Схема эволюции эукариотических клеток.
1 — образование двойной мембраны ядра,
2 — приобретение митохондрий,
3 — приобретение пластид,
4 — внедрение получившейся фотосинтезирующей эукариотической клетки в нефотосинтезирующую (например, в ходе эволюции криптофитовых водорослей),
5 — внедрение получившейся клетки снова в нефотосинтезирующую (например, при симбиозе этих водорослей с инфузориями).
Цветом обозначен геном
предков эукариот , митохондрий и пластид .

Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и пластид.

Содержание

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер [1] , показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина [2] и О. В. Баранецкого о двойственной природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский [3] в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии — это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ [4] . Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в своё время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.

  • имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя — бактерий.
  • размножаются бинарным делением (причём делятся иногда независимо от деления клетки), никогда не синтезируются de novo.
  • генетический материал — кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
  • имеют свой аппарат синтеза белка — рибосомы и др.
  • рибосомыпрокариотического типа — c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
  • некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.
  • ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.
  • В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.
  • Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.

  • Mixotricha paradoxa — наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes, прикреплённых к поверхности её клетки. Митохондрии у этого организма вторично потеряны, но внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.
  • Амёбы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.
  • Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелёными водорослями рода хлорелла (Chlorella).
  • Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы — органоиды, напоминающие типичные хлоропласты красных водорослей, но отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан (размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий).

Эндосимбиоз — наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.

Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов [5]

В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis ). В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра [6] [7] .

Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путём деления, а путём достраивания нового органоида рядом со старым.

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами [8] .

- Митохондрии и пластиды

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

Рекомендуемые материалы

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты » . Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. «chloros » – зеленый, «plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды, имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Между собой граны соединены другими тилакоидами (ламелы, фреты). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях (a, b, c, d). У высших растений и водорослей в качестве основного пигмента содержится хлорофилл а с формулой С55Н72О5N4Мg. В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и «plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный). Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами, масла – эйлалопластами, белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

"2 - Проницаемость и пористость" - тут тоже много полезного для Вас.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.

Читайте также: